Esempio n. 1
0
def test_schema_change_roundtrip(gen_uuid):
    old_schema = Schema([
        ColumnSchema(gen_uuid(), "ID", "integer", 0),
        ColumnSchema(gen_uuid(), "given_name", "text", None),
        ColumnSchema(gen_uuid(), "surname", "text", None),
        ColumnSchema(gen_uuid(), "date_of_birth", "date", None),
    ])
    new_schema = Schema([
        ColumnSchema(old_schema[0].id, "personnel_id", "integer", 0),
        ColumnSchema(gen_uuid(), "tax_file_number", "text", None),
        ColumnSchema(old_schema[2].id, "last_name", "text", None),
        ColumnSchema(old_schema[1].id, "first_name", "text", None),
        ColumnSchema(gen_uuid(), "middle_names", "text", None),
    ])
    # Updating the schema without updating features is only possible
    # if the old and new schemas have the same primary key columns:
    assert old_schema.is_pk_compatible(new_schema)

    feature_tuple = (7, "Joe", "Bloggs", "1970-01-01")
    feature_dict = {
        "given_name": "Joe",
        "surname": "Bloggs",
        "date_of_birth": "1970-01-01",
        "ID": 7,
    }

    feature_path, feature_data = EMPTY_DATASET.encode_feature(
        feature_tuple, old_schema)
    feature_path2, feature_data2 = EMPTY_DATASET.encode_feature(
        feature_dict, old_schema)
    # Either encode method should give the same result.
    assert (feature_path, feature_data) == (feature_path2, feature_data2)

    # The dataset should store only the current schema, but all legends.
    schema_path, schema_data = EMPTY_DATASET.encode_schema(new_schema)
    new_legend_path, new_legend_data = EMPTY_DATASET.encode_legend(
        new_schema.legend)
    old_legend_path, old_legend_data = EMPTY_DATASET.encode_legend(
        old_schema.legend)
    tree = DictTree({
        schema_path: schema_data,
        new_legend_path: new_legend_data,
        old_legend_path: old_legend_data,
        feature_path: feature_data,
    })

    dataset2 = Dataset2(tree / DATASET_PATH, DATASET_PATH)
    # Old columns that are not present in the new schema are gone.
    # New columns that are not present in the old schema have 'None's.
    roundtripped = dataset2.get_feature(path=feature_path, keys=False)
    assert roundtripped == (7, None, "Bloggs", "Joe", None)
    roundtripped = dataset2.get_feature(path=feature_path, keys=True)
    assert roundtripped == {
        "personnel_id": 7,
        "tax_file_number": None,
        "last_name": "Bloggs",
        "first_name": "Joe",
        "middle_names": None,
    }
Esempio n. 2
0
def test_align_schema(gen_uuid):
    old_schema = Schema(
        [
            ColumnSchema(gen_uuid(), "ID", "integer", 0),
            ColumnSchema(gen_uuid(), "first_name", "text", None),
            ColumnSchema(gen_uuid(), "last_name", "text", None),
            ColumnSchema(gen_uuid(), "date_of_birth", "date", None),
        ]
    )
    new_schema = Schema(
        [
            ColumnSchema(gen_uuid(), "personnel_id", "integer", 0),
            ColumnSchema(gen_uuid(), "tax_file_number", "text", None),
            ColumnSchema(gen_uuid(), "last_name", "text", None),
            ColumnSchema(gen_uuid(), "first_name", "text", None),
            ColumnSchema(gen_uuid(), "middle_names", "text", None),
        ]
    )
    aligned_schema = old_schema.align_to_self(new_schema)

    assert [c.name for c in aligned_schema] == [
        "personnel_id",
        "tax_file_number",
        "last_name",
        "first_name",
        "middle_names",
    ]

    aligned = {}
    for old_col in old_schema:
        for aligned_col in aligned_schema:
            if aligned_col.id == old_col.id:
                aligned[old_col.name] = aligned_col.name

    assert aligned == {
        "ID": "personnel_id",
        "first_name": "first_name",
        "last_name": "last_name",
    }

    diff_counts = old_schema.diff_type_counts(aligned_schema)
    assert diff_counts == {
        "inserts": 2,
        "deletes": 1,
        "name_updates": 1,
        "position_updates": 1,
        "type_updates": 0,
        "pk_updates": 0,
    }
Esempio n. 3
0
def test_feature_roundtrip(gen_uuid):
    schema = Schema([
        ColumnSchema(gen_uuid(), "geom", "geometry", None, **GEOM_TYPE_INFO),
        ColumnSchema(gen_uuid(), "id", "integer", 1, size=64),
        ColumnSchema(gen_uuid(), "artist", "text", 0, length=200),
        ColumnSchema(gen_uuid(), "recording", "blob", None),
    ])
    schema_path, schema_data = EMPTY_DATASET.encode_schema(schema)
    legend_path, legend_data = EMPTY_DATASET.encode_legend(schema.legend)

    # Feature tuples must be in schema order:
    feature_tuple = ("010100000087BF756489EF5C4C", 7, "GIS Choir", b"MP3")
    # But for feature dicts, the initialisation order is not important.
    feature_dict = {
        "artist": "GIS Choir",
        "recording": b"MP3",
        "id": 7,
        "geom": "010100000087BF756489EF5C4C",
    }

    feature_path, feature_data = EMPTY_DATASET.encode_feature(
        feature_tuple, schema)
    feature_path2, feature_data2 = EMPTY_DATASET.encode_feature(
        feature_dict, schema)
    # Either encode method should give the same result.
    assert (feature_path, feature_data) == (feature_path2, feature_data2)

    tree = DictTree({
        schema_path: schema_data,
        legend_path: legend_data,
        feature_path: feature_data
    })

    dataset2 = Dataset2(tree / DATASET_PATH, DATASET_PATH)
    roundtripped_tuple = dataset2.get_feature(path=feature_path, keys=False)
    assert roundtripped_tuple is not feature_tuple
    assert roundtripped_tuple == feature_tuple

    roundtripped_dict = dataset2.get_feature(path=feature_path, keys=True)
    assert roundtripped_dict is not feature_dict
    assert roundtripped_dict == feature_dict
Esempio n. 4
0
def test_schema_roundtrip(gen_uuid):
    orig = Schema([
        ColumnSchema(gen_uuid(), "geom", "geometry", None, **GEOM_TYPE_INFO),
        ColumnSchema(gen_uuid(), "id", "integer", 1, size=64),
        ColumnSchema(gen_uuid(), "artist", "text", 0, length=200),
        ColumnSchema(gen_uuid(), "recording", "blob", None),
    ])

    roundtripped = Schema.loads(orig.dumps())

    assert roundtripped is not orig
    assert roundtripped == orig

    path, data = EMPTY_DATASET.encode_schema(orig)
    tree = DictTree({path: data})

    dataset2 = Dataset2(tree / DATASET_PATH, DATASET_PATH)
    roundtripped = dataset2.schema

    assert roundtripped is not orig
    assert roundtripped == orig
Esempio n. 5
0
def test_schema_diff_as_text(gen_uuid):
    old_schema = Schema(
        [
            ColumnSchema(gen_uuid(), "fid", "integer", 0, size=64),
            ColumnSchema(
                gen_uuid(),
                "geom",
                "geometry",
                None,
                geometryType="MULTIPOLYGON",
                geometryCRS="EPSG:2193",
            ),
            ColumnSchema(gen_uuid(), "building_id", "integer", None, size=32),
            ColumnSchema(gen_uuid(), "name", "text", None),
            ColumnSchema(gen_uuid(), "use", "text", None),
            ColumnSchema(gen_uuid(), "suburb_locality", "text", None),
            ColumnSchema(gen_uuid(), "town_city", "text", None),
            ColumnSchema(gen_uuid(), "territorial_authority", "text", None),
            ColumnSchema(gen_uuid(), "last_modified", "date", None),
        ]
    )
    new_schema = Schema(
        [
            ColumnSchema(gen_uuid(), "fid", "integer", 0, size=64),
            ColumnSchema(gen_uuid(), "building_id", "integer", None, size=64),
            ColumnSchema(gen_uuid(), "name", "text", None, size=40),
            ColumnSchema(gen_uuid(), "territorial_authority", "text", None),
            ColumnSchema(gen_uuid(), "use", "text", None),
            ColumnSchema(gen_uuid(), "colour", "integer", None, size=32),
            ColumnSchema(gen_uuid(), "town_city", "text", None),
            ColumnSchema(
                gen_uuid(),
                "geom",
                "geometry",
                None,
                geometryType="MULTIPOLYGON",
                geometryCRS="EPSG:2193",
            ),
            ColumnSchema(gen_uuid(), "last_modified", "date", None),
        ]
    )
    aligned_schema = old_schema.align_to_self(new_schema)

    output = schema_diff_as_text(old_schema, aligned_schema)

    assert click.unstyle(output).splitlines() == [
        "  [",
        "    {",
        '      "id": "b11ea716-6b85-f672-741f-8281aaa04bef",',
        '      "name": "fid",',
        '      "dataType": "integer",',
        '      "primaryKeyIndex": 0,',
        '      "size": 64',
        "    },",
        "-   {",
        '-     "id": "0d167b8b-294f-c2be-4747-bc947672d3a0",',
        '-     "name": "geom",',
        '-     "dataType": "geometry",',
        '-     "primaryKeyIndex": null,',
        '-     "geometryType": "MULTIPOLYGON",',
        '-     "geometryCRS": "EPSG:2193"',
        "-   },",
        "    {",
        '      "id": "0f28f35f-89d8-2b93-40d7-30abe42c69ea",',
        '      "name": "building_id",',
        '      "dataType": "integer",',
        '      "primaryKeyIndex": null,',
        '-     "size": 32,',
        '+     "size": 64,',
        "    },",
        "    {",
        '      "id": "b5c69fa8-f48f-59bb-7aab-95225daf4774",',
        '      "name": "name",',
        '      "dataType": "text",',
        '      "primaryKeyIndex": null,',
        '+     "size": 40,',
        "    },",
        "+   {",
        '+     "id": "d087bf39-1c76-fdd9-1315-0e81c6bd360f",',
        '+     "name": "territorial_authority",',
        '+     "dataType": "text",',
        '+     "primaryKeyIndex": null',
        "+   },",
        "    {",
        '      "id": "9f1924ac-097a-fc0a-b168-a06e8db32af7",',
        '      "name": "use",',
        '      "dataType": "text",',
        '      "primaryKeyIndex": null',
        "    },",
        "-   {",
        '-     "id": "1bcf7a4a-19e9-9752-6264-0fd1d387633b",',
        '-     "name": "suburb_locality",',
        '-     "dataType": "text",',
        '-     "primaryKeyIndex": null',
        "-   },",
        "+   {",
        '+     "id": "0f4e1e5b-9adb-edbe-6cbd-0ee0140448e6",',
        '+     "name": "colour",',
        '+     "dataType": "integer",',
        '+     "primaryKeyIndex": null,',
        '+     "size": 32',
        "+   },",
        "    {",
        '      "id": "1777c850-baa2-6d52-dfcd-309f1741ff51",',
        '      "name": "town_city",',
        '      "dataType": "text",',
        '      "primaryKeyIndex": null',
        "    },",
        "-   {",
        '-     "id": "d087bf39-1c76-fdd9-1315-0e81c6bd360f",',
        '-     "name": "territorial_authority",',
        '-     "dataType": "text",',
        '-     "primaryKeyIndex": null',
        "-   },",
        "+   {",
        '+     "id": "0d167b8b-294f-c2be-4747-bc947672d3a0",',
        '+     "name": "geom",',
        '+     "dataType": "geometry",',
        '+     "primaryKeyIndex": null,',
        '+     "geometryType": "MULTIPOLYGON",',
        '+     "geometryCRS": "EPSG:2193"',
        "+   },",
        "    {",
        '      "id": "db82ba8c-c997-4bf1-87ef-b5108bdccde7",',
        '      "name": "last_modified",',
        '      "dataType": "date",',
        '      "primaryKeyIndex": null',
        "    },",
        "  ]",
    ]
Esempio n. 6
0
 def _pki(pk_index):
     # Returns an arbitrary ColumnSchema, but with the given pk_index property.
     id = gen_uuid()
     return ColumnSchema(id, id[:8], "integer", pk_index)