Esempio n. 1
0
def main():
    parser = get_parser()
    LibriSpeechAsrDataModule.add_arguments(parser)
    args = parser.parse_args()

    model_type = args.model_type
    epoch = args.epoch
    avg = args.avg
    att_rate = args.att_rate
    num_paths = args.num_paths
    use_lm_rescoring = args.use_lm_rescoring
    use_whole_lattice = False
    if use_lm_rescoring and num_paths < 1:
        # It doesn't make sense to use n-best list for rescoring
        # when n is less than 1
        use_whole_lattice = True

    output_beam_size = args.output_beam_size

    exp_dir = Path('exp-' + model_type + '-noam-mmi-att-musan-sa-vgg')
    setup_logger('{}/log/log-decode'.format(exp_dir), log_level='debug')

    logging.info(f'output_beam_size: {output_beam_size}')

    # load L, G, symbol_table
    lang_dir = Path('data/lang_nosp')
    symbol_table = k2.SymbolTable.from_file(lang_dir / 'words.txt')
    phone_symbol_table = k2.SymbolTable.from_file(lang_dir / 'phones.txt')

    phone_ids = get_phone_symbols(phone_symbol_table)
    P = create_bigram_phone_lm(phone_ids)

    phone_ids_with_blank = [0] + phone_ids
    ctc_topo = k2.arc_sort(build_ctc_topo(phone_ids_with_blank))

    logging.debug("About to load model")
    # Note: Use "export CUDA_VISIBLE_DEVICES=N" to setup device id to N
    # device = torch.device('cuda', 1)
    device = torch.device('cuda')

    if att_rate != 0.0:
        num_decoder_layers = 6
    else:
        num_decoder_layers = 0

    if model_type == "transformer":
        model = Transformer(
            num_features=80,
            nhead=args.nhead,
            d_model=args.attention_dim,
            num_classes=len(phone_ids) + 1,  # +1 for the blank symbol
            subsampling_factor=4,
            num_decoder_layers=num_decoder_layers,
            vgg_frontend=True)
    elif model_type == "conformer":
        model = Conformer(
            num_features=80,
            nhead=args.nhead,
            d_model=args.attention_dim,
            num_classes=len(phone_ids) + 1,  # +1 for the blank symbol
            subsampling_factor=4,
            num_decoder_layers=num_decoder_layers,
            vgg_frontend=True)
    elif model_type == "contextnet":
        model = ContextNet(num_features=80, num_classes=len(phone_ids) +
                           1)  # +1 for the blank symbol
    else:
        raise NotImplementedError("Model of type " + str(model_type) +
                                  " is not implemented")

    model.P_scores = torch.nn.Parameter(P.scores.clone(), requires_grad=False)

    if avg == 1:
        checkpoint = os.path.join(exp_dir, 'epoch-' + str(epoch - 1) + '.pt')
        load_checkpoint(checkpoint, model)
    else:
        checkpoints = [
            os.path.join(exp_dir, 'epoch-' + str(avg_epoch) + '.pt')
            for avg_epoch in range(epoch - avg, epoch)
        ]
        average_checkpoint(checkpoints, model)

    model.to(device)
    model.eval()

    assert P.requires_grad is False
    P.scores = model.P_scores.cpu()
    print_transition_probabilities(P,
                                   phone_symbol_table,
                                   phone_ids,
                                   filename='model_P_scores.txt')

    P.set_scores_stochastic_(model.P_scores)
    print_transition_probabilities(P,
                                   phone_symbol_table,
                                   phone_ids,
                                   filename='P_scores.txt')

    if not os.path.exists(lang_dir / 'HLG.pt'):
        logging.debug("Loading L_disambig.fst.txt")
        with open(lang_dir / 'L_disambig.fst.txt') as f:
            L = k2.Fsa.from_openfst(f.read(), acceptor=False)
        logging.debug("Loading G.fst.txt")
        with open(lang_dir / 'G.fst.txt') as f:
            G = k2.Fsa.from_openfst(f.read(), acceptor=False)
        first_phone_disambig_id = find_first_disambig_symbol(
            phone_symbol_table)
        first_word_disambig_id = find_first_disambig_symbol(symbol_table)
        HLG = compile_HLG(L=L,
                          G=G,
                          H=ctc_topo,
                          labels_disambig_id_start=first_phone_disambig_id,
                          aux_labels_disambig_id_start=first_word_disambig_id)
        torch.save(HLG.as_dict(), lang_dir / 'HLG.pt')
    else:
        logging.debug("Loading pre-compiled HLG")
        d = torch.load(lang_dir / 'HLG.pt')
        HLG = k2.Fsa.from_dict(d)

    if use_lm_rescoring:
        if use_whole_lattice:
            logging.info('Rescoring with the whole lattice')
        else:
            logging.info(f'Rescoring with n-best list, n is {num_paths}')
        first_word_disambig_id = find_first_disambig_symbol(symbol_table)
        if not os.path.exists(lang_dir / 'G_4_gram.pt'):
            logging.debug('Loading G_4_gram.fst.txt')
            with open(lang_dir / 'G_4_gram.fst.txt') as f:
                G = k2.Fsa.from_openfst(f.read(), acceptor=False)
                # G.aux_labels is not needed in later computations, so
                # remove it here.
                del G.aux_labels
                # CAUTION(fangjun): The following line is crucial.
                # Arcs entering the back-off state have label equal to #0.
                # We have to change it to 0 here.
                G.labels[G.labels >= first_word_disambig_id] = 0
                G = k2.create_fsa_vec([G]).to(device)
                G = k2.arc_sort(G)
                torch.save(G.as_dict(), lang_dir / 'G_4_gram.pt')
        else:
            logging.debug('Loading pre-compiled G_4_gram.pt')
            d = torch.load(lang_dir / 'G_4_gram.pt')
            G = k2.Fsa.from_dict(d).to(device)

        if use_whole_lattice:
            # Add epsilon self-loops to G as we will compose
            # it with the whole lattice later
            G = k2.add_epsilon_self_loops(G)
            G = k2.arc_sort(G)
            G = G.to(device)
    else:
        logging.debug('Decoding without LM rescoring')
        G = None

    logging.debug("convert HLG to device")
    HLG = HLG.to(device)
    HLG.aux_labels = k2.ragged.remove_values_eq(HLG.aux_labels, 0)
    HLG.requires_grad_(False)

    if not hasattr(HLG, 'lm_scores'):
        HLG.lm_scores = HLG.scores.clone()

    # load dataset
    librispeech = LibriSpeechAsrDataModule(args)
    test_sets = ['test-clean', 'test-other']
    #  test_sets = ['test-other']
    for test_set, test_dl in zip(test_sets, librispeech.test_dataloaders()):
        logging.info(f'* DECODING: {test_set}')

        results = decode(dataloader=test_dl,
                         model=model,
                         device=device,
                         HLG=HLG,
                         symbols=symbol_table,
                         num_paths=num_paths,
                         G=G,
                         use_whole_lattice=use_whole_lattice,
                         output_beam_size=output_beam_size)

        recog_path = exp_dir / f'recogs-{test_set}.txt'
        store_transcripts(path=recog_path, texts=results)
        logging.info(f'The transcripts are stored in {recog_path}')

        # The following prints out WERs, per-word error statistics and aligned
        # ref/hyp pairs.
        errs_filename = exp_dir / f'errs-{test_set}.txt'
        with open(errs_filename, 'w') as f:
            write_error_stats(f, test_set, results)
        logging.info('Wrote detailed error stats to {}'.format(errs_filename))
def run(rank, world_size, args):
    '''
    Args:
      rank:
        It is a value between 0 and `world_size-1`, which is
        passed automatically by `mp.spawn()` in :func:`main`.
        The node with rank 0 is responsible for saving checkpoint.
      world_size:
        Number of GPUs for DDP training.
      args:
        The return value of get_parser().parse_args()
    '''
    model_type = args.model_type
    start_epoch = args.start_epoch
    num_epochs = args.num_epochs
    accum_grad = args.accum_grad
    den_scale = args.den_scale
    att_rate = args.att_rate

    fix_random_seed(42)
    setup_dist(rank, world_size, args.master_port)

    exp_dir = Path('exp-' + model_type + '-noam-mmi-att-musan-sa-vgg')
    setup_logger(f'{exp_dir}/log/log-train-{rank}')
    if args.tensorboard and rank == 0:
        tb_writer = SummaryWriter(log_dir=f'{exp_dir}/tensorboard')
    else:
        tb_writer = None
    #  tb_writer = SummaryWriter(log_dir=f'{exp_dir}/tensorboard') if args.tensorboard and rank == 0 else None

    logging.info("Loading lexicon and symbol tables")
    lang_dir = Path('data/lang_nosp')
    lexicon = Lexicon(lang_dir)

    device_id = rank
    device = torch.device('cuda', device_id)

    graph_compiler = MmiTrainingGraphCompiler(
        lexicon=lexicon,
        device=device,
    )
    phone_ids = lexicon.phone_symbols()
    P = create_bigram_phone_lm(phone_ids)
    P.scores = torch.zeros_like(P.scores)
    P = P.to(device)

    mls = MLSAsrDataModule(args)
    train_dl = mls.train_dataloaders()
    valid_dl = mls.valid_dataloaders()

    if not torch.cuda.is_available():
        logging.error('No GPU detected!')
        sys.exit(-1)

    logging.info("About to create model")

    if att_rate != 0.0:
        num_decoder_layers = 6
    else:
        num_decoder_layers = 0

    if model_type == "transformer":
        model = Transformer(
            num_features=80,
            nhead=args.nhead,
            d_model=args.attention_dim,
            num_classes=len(phone_ids) + 1,  # +1 for the blank symbol
            subsampling_factor=4,
            num_decoder_layers=num_decoder_layers,
            vgg_frontend=True)
    elif model_type == "conformer":
        model = Conformer(
            num_features=80,
            nhead=args.nhead,
            d_model=args.attention_dim,
            num_classes=len(phone_ids) + 1,  # +1 for the blank symbol
            subsampling_factor=4,
            num_decoder_layers=num_decoder_layers,
            vgg_frontend=True)
    elif model_type == "contextnet":
        model = ContextNet(num_features=80, num_classes=len(phone_ids) +
                           1)  # +1 for the blank symbol
    else:
        raise NotImplementedError("Model of type " + str(model_type) +
                                  " is not implemented")

    model.P_scores = nn.Parameter(P.scores.clone(), requires_grad=True)

    model.to(device)
    describe(model)

    model = DDP(model, device_ids=[rank])

    # Now for the aligment model, if any
    if args.use_ali_model:
        ali_model = TdnnLstm1b(
            num_features=80,
            num_classes=len(phone_ids) + 1,  # +1 for the blank symbol
            subsampling_factor=4)

        ali_model_fname = Path(
            f'exp-lstm-adam-ctc-musan/epoch-{args.ali_model_epoch}.pt')
        assert ali_model_fname.is_file(), \
                f'ali model filename {ali_model_fname} does not exist!'
        ali_model.load_state_dict(
            torch.load(ali_model_fname, map_location='cpu')['state_dict'])
        ali_model.to(device)

        ali_model.eval()
        ali_model.requires_grad_(False)
        logging.info(f'Use ali_model: {ali_model_fname}')
    else:
        ali_model = None
        logging.info('No ali_model')

    optimizer = Noam(model.parameters(),
                     model_size=args.attention_dim,
                     factor=args.lr_factor,
                     warm_step=args.warm_step,
                     weight_decay=args.weight_decay)

    scaler = GradScaler(enabled=args.amp)

    best_objf = np.inf
    best_valid_objf = np.inf
    best_epoch = start_epoch
    best_model_path = os.path.join(exp_dir, 'best_model.pt')
    best_epoch_info_filename = os.path.join(exp_dir, 'best-epoch-info')
    global_batch_idx_train = 0  # for logging only

    if start_epoch > 0:
        model_path = os.path.join(exp_dir,
                                  'epoch-{}.pt'.format(start_epoch - 1))
        ckpt = load_checkpoint(filename=model_path,
                               model=model,
                               optimizer=optimizer,
                               scaler=scaler)
        best_objf = ckpt['objf']
        best_valid_objf = ckpt['valid_objf']
        global_batch_idx_train = ckpt['global_batch_idx_train']
        logging.info(
            f"epoch = {ckpt['epoch']}, objf = {best_objf}, valid_objf = {best_valid_objf}"
        )

    for epoch in range(start_epoch, num_epochs):
        train_dl.sampler.set_epoch(epoch)
        curr_learning_rate = optimizer._rate
        if tb_writer is not None:
            tb_writer.add_scalar('train/learning_rate', curr_learning_rate,
                                 global_batch_idx_train)
            tb_writer.add_scalar('train/epoch', epoch, global_batch_idx_train)

        logging.info('epoch {}, learning rate {}'.format(
            epoch, curr_learning_rate))
        objf, valid_objf, global_batch_idx_train = train_one_epoch(
            dataloader=train_dl,
            valid_dataloader=valid_dl,
            model=model,
            ali_model=ali_model,
            P=P,
            device=device,
            graph_compiler=graph_compiler,
            optimizer=optimizer,
            accum_grad=accum_grad,
            den_scale=den_scale,
            att_rate=att_rate,
            current_epoch=epoch,
            tb_writer=tb_writer,
            num_epochs=num_epochs,
            global_batch_idx_train=global_batch_idx_train,
            world_size=world_size,
            scaler=scaler)
        # the lower, the better
        if valid_objf < best_valid_objf:
            best_valid_objf = valid_objf
            best_objf = objf
            best_epoch = epoch
            save_checkpoint(filename=best_model_path,
                            optimizer=None,
                            scheduler=None,
                            scaler=None,
                            model=model,
                            epoch=epoch,
                            learning_rate=curr_learning_rate,
                            objf=objf,
                            valid_objf=valid_objf,
                            global_batch_idx_train=global_batch_idx_train,
                            local_rank=rank)
            save_training_info(filename=best_epoch_info_filename,
                               model_path=best_model_path,
                               current_epoch=epoch,
                               learning_rate=curr_learning_rate,
                               objf=objf,
                               best_objf=best_objf,
                               valid_objf=valid_objf,
                               best_valid_objf=best_valid_objf,
                               best_epoch=best_epoch,
                               local_rank=rank)

        # we always save the model for every epoch
        model_path = os.path.join(exp_dir, 'epoch-{}.pt'.format(epoch))
        save_checkpoint(filename=model_path,
                        optimizer=optimizer,
                        scheduler=None,
                        scaler=scaler,
                        model=model,
                        epoch=epoch,
                        learning_rate=curr_learning_rate,
                        objf=objf,
                        valid_objf=valid_objf,
                        global_batch_idx_train=global_batch_idx_train,
                        local_rank=rank)
        epoch_info_filename = os.path.join(exp_dir,
                                           'epoch-{}-info'.format(epoch))
        save_training_info(filename=epoch_info_filename,
                           model_path=model_path,
                           current_epoch=epoch,
                           learning_rate=curr_learning_rate,
                           objf=objf,
                           best_objf=best_objf,
                           valid_objf=valid_objf,
                           best_valid_objf=best_valid_objf,
                           best_epoch=best_epoch,
                           local_rank=rank)

    logging.warning('Done')
    torch.distributed.barrier()
    cleanup_dist()
def main():
    parser = get_parser()
    GigaSpeechAsrDataModule.add_arguments(parser)
    args = parser.parse_args()

    model_type = args.model_type
    epoch = args.epoch
    avg = args.avg
    att_rate = args.att_rate
    num_paths = args.num_paths
    use_lm_rescoring = args.use_lm_rescoring
    use_whole_lattice = False
    if use_lm_rescoring and num_paths < 1:
        # It doesn't make sense to use n-best list for rescoring
        # when n is less than 1
        use_whole_lattice = True

    output_beam_size = args.output_beam_size

    suffix = ''
    if args.context_window is not None and args.context_window > 0:
        suffix = f'ac{args.context_window}'
    giga_subset = f'giga{args.subset}'
    exp_dir = Path(
        f'exp-{model_type}-mmi-att-sa-vgg-normlayer-{giga_subset}-{suffix}')

    setup_logger('{}/log/log-decode'.format(exp_dir), log_level='debug')

    logging.info(f'output_beam_size: {output_beam_size}')

    # load L, G, symbol_table
    lang_dir = Path('data/lang_nosp')
    symbol_table = k2.SymbolTable.from_file(lang_dir / 'words.txt')
    phone_symbol_table = k2.SymbolTable.from_file(lang_dir / 'phones.txt')

    phone_ids = get_phone_symbols(phone_symbol_table)

    phone_ids_with_blank = [0] + phone_ids
    ctc_topo = k2.arc_sort(build_ctc_topo(phone_ids_with_blank))

    logging.debug("About to load model")
    # Note: Use "export CUDA_VISIBLE_DEVICES=N" to setup device id to N
    # device = torch.device('cuda', 1)
    device = torch.device('cuda')

    if att_rate != 0.0:
        num_decoder_layers = 6
    else:
        num_decoder_layers = 0

    if model_type == "transformer":
        model = Transformer(
            num_features=80,
            nhead=args.nhead,
            d_model=args.attention_dim,
            num_classes=len(phone_ids) + 1,  # +1 for the blank symbol
            subsampling_factor=4,
            num_decoder_layers=num_decoder_layers,
            vgg_frontend=args.vgg_fronted)
    elif model_type == "conformer":
        model = Conformer(
            num_features=80,
            nhead=args.nhead,
            d_model=args.attention_dim,
            num_classes=len(phone_ids) + 1,  # +1 for the blank symbol
            subsampling_factor=4,
            num_decoder_layers=num_decoder_layers,
            vgg_frontend=args.vgg_frontend,
            is_espnet_structure=args.is_espnet_structure)
    elif model_type == "contextnet":
        model = ContextNet(num_features=80, num_classes=len(phone_ids) +
                           1)  # +1 for the blank symbol
    else:
        raise NotImplementedError("Model of type " + str(model_type) +
                                  " is not implemented")

    if avg == 1:
        checkpoint = os.path.join(exp_dir, 'epoch-' + str(epoch - 1) + '.pt')
        load_checkpoint(checkpoint, model)
    else:
        checkpoints = [
            os.path.join(exp_dir, 'epoch-' + str(avg_epoch) + '.pt')
            for avg_epoch in range(epoch - avg, epoch)
        ]
        average_checkpoint(checkpoints, model)

    if args.torchscript:
        logging.info('Applying TorchScript to model...')
        model = torch.jit.script(model)
        ts_path = exp_dir / f'model_ts_epoch{epoch}_avg{avg}.pt'
        logging.info(f'Storing the TorchScripted model in {ts_path}')
        model.save(ts_path)

    model.to(device)
    model.eval()

    if not os.path.exists(lang_dir / 'HLG.pt'):
        logging.debug("Loading L_disambig.fst.txt")
        with open(lang_dir / 'L_disambig.fst.txt') as f:
            L = k2.Fsa.from_openfst(f.read(), acceptor=False)
        logging.debug("Loading G.fst.txt")
        with open(lang_dir / 'G.fst.txt') as f:
            G = k2.Fsa.from_openfst(f.read(), acceptor=False)
        first_phone_disambig_id = find_first_disambig_symbol(
            phone_symbol_table)
        first_word_disambig_id = find_first_disambig_symbol(symbol_table)
        HLG = compile_HLG(L=L,
                          G=G,
                          H=ctc_topo,
                          labels_disambig_id_start=first_phone_disambig_id,
                          aux_labels_disambig_id_start=first_word_disambig_id)
        torch.save(HLG.as_dict(), lang_dir / 'HLG.pt')
    else:
        logging.debug("Loading pre-compiled HLG")
        d = torch.load(lang_dir / 'HLG.pt')
        HLG = k2.Fsa.from_dict(d)

    if use_lm_rescoring:
        if use_whole_lattice:
            logging.info('Rescoring with the whole lattice')
        else:
            logging.info(f'Rescoring with n-best list, n is {num_paths}')
        first_word_disambig_id = find_first_disambig_symbol(symbol_table)
        if not os.path.exists(lang_dir / 'G_4_gram.pt'):
            logging.debug('Loading G_4_gram.fst.txt')
            with open(lang_dir / 'G_4_gram.fst.txt') as f:
                G = k2.Fsa.from_openfst(f.read(), acceptor=False)
                # G.aux_labels is not needed in later computations, so
                # remove it here.
                del G.aux_labels
                # CAUTION(fangjun): The following line is crucial.
                # Arcs entering the back-off state have label equal to #0.
                # We have to change it to 0 here.
                G.labels[G.labels >= first_word_disambig_id] = 0
                G = k2.create_fsa_vec([G]).to(device)
                G = k2.arc_sort(G)
                torch.save(G.as_dict(), lang_dir / 'G_4_gram.pt')
        else:
            logging.debug('Loading pre-compiled G_4_gram.pt')
            d = torch.load(lang_dir / 'G_4_gram.pt')
            G = k2.Fsa.from_dict(d).to(device)

        if use_whole_lattice:
            # Add epsilon self-loops to G as we will compose
            # it with the whole lattice later
            G = k2.add_epsilon_self_loops(G)
            G = k2.arc_sort(G)
            G = G.to(device)
        # G.lm_scores is used to replace HLG.lm_scores during
        # LM rescoring.
        G.lm_scores = G.scores.clone()
    else:
        logging.debug('Decoding without LM rescoring')
        G = None
        if num_paths > 1:
            logging.debug(f'Use n-best list decoding, n is {num_paths}')
        else:
            logging.debug('Use 1-best decoding')

    logging.debug("convert HLG to device")
    HLG = HLG.to(device)
    HLG.aux_labels = k2.ragged.remove_values_eq(HLG.aux_labels, 0)
    HLG.requires_grad_(False)

    if not hasattr(HLG, 'lm_scores'):
        HLG.lm_scores = HLG.scores.clone()

    # load dataset
    gigaspeech = GigaSpeechAsrDataModule(args)
    test_sets = ['DEV', 'TEST']
    for test_set, test_dl in zip(
            test_sets,
        [gigaspeech.valid_dataloaders(),
         gigaspeech.test_dataloaders()]):
        logging.info(f'* DECODING: {test_set}')

        test_set_wers = dict()
        results_dict = decode(dataloader=test_dl,
                              model=model,
                              HLG=HLG,
                              symbols=symbol_table,
                              num_paths=num_paths,
                              G=G,
                              use_whole_lattice=use_whole_lattice,
                              output_beam_size=output_beam_size)

        for key, results in results_dict.items():
            recog_path = exp_dir / f'recogs-{test_set}-{key}.txt'
            store_transcripts(path=recog_path, texts=results)
            logging.info(f'The transcripts are stored in {recog_path}')

            ref_path = exp_dir / f'ref-{test_set}.trn'
            hyp_path = exp_dir / f'hyp-{test_set}.trn'
            store_transcripts_for_sclite(ref_path=ref_path,
                                         hyp_path=hyp_path,
                                         texts=results)
            logging.info(
                f'The sclite-format transcripts are stored in {ref_path} and {hyp_path}'
            )
            cmd = f'python3 GigaSpeech/utils/gigaspeech_scoring.py {ref_path} {hyp_path} {exp_dir / "tmp_sclite"}'
            logging.info(cmd)
            try:
                subprocess.run(cmd, check=True, shell=True)
            except subprocess.CalledProcessError:
                logging.error(
                    'Skipping sclite scoring as it failed to run: Is "sclite" registered in your $PATH?"'
                )

            # The following prints out WERs, per-word error statistics and aligned
            # ref/hyp pairs.
            errs_filename = exp_dir / f'errs-{test_set}-{key}.txt'
            with open(errs_filename, 'w') as f:
                wer = write_error_stats(f, f'{test_set}-{key}', results)
                test_set_wers[key] = wer

            logging.info(
                'Wrote detailed error stats to {}'.format(errs_filename))

        test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
        errs_info = exp_dir / f'wer-summary-{test_set}.txt'
        with open(errs_info, 'w') as f:
            print('settings\tWER', file=f)
            for key, val in test_set_wers:
                print('{}\t{}'.format(key, val), file=f)

        s = '\nFor {}, WER of different settings are:\n'.format(test_set)
        note = '\tbest for {}'.format(test_set)
        for key, val in test_set_wers:
            s += '{}\t{}{}\n'.format(key, val, note)
            note = ''
        logging.info(s)
def run(rank, world_size, args):
    '''
    Args:
      rank:
        It is a value between 0 and `world_size-1`, which is
        passed automatically by `mp.spawn()` in :func:`main`.
        The node with rank 0 is responsible for saving checkpoint.
      world_size:
        Number of GPUs for DDP training.
      args:
        The return value of get_parser().parse_args()
    '''
    model_type = args.model_type
    start_epoch = args.start_epoch
    num_epochs = args.num_epochs
    accum_grad = args.accum_grad
    den_scale = args.den_scale
    att_rate = args.att_rate
    use_pruned_intersect = args.use_pruned_intersect

    fix_random_seed(42)
    if world_size > 1:
        setup_dist(rank, world_size, args.master_port)

    suffix = ''
    if args.context_window is not None and args.context_window > 0:
        suffix = f'ac{args.context_window}'
    giga_subset = f'giga{args.subset}'
    exp_dir = Path(
        f'exp-{model_type}-mmi-att-sa-vgg-normlayer-{giga_subset}-{suffix}')

    setup_logger(f'{exp_dir}/log/log-train-{rank}')
    if args.tensorboard and rank == 0:
        tb_writer = SummaryWriter(log_dir=f'{exp_dir}/tensorboard')
    else:
        tb_writer = None

    logging.info("Loading lexicon and symbol tables")
    lang_dir = Path('data/lang_nosp')
    lexicon = Lexicon(lang_dir)

    device_id = rank
    device = torch.device('cuda', device_id)

    if not Path(lang_dir / f'P_{args.subset}.pt').is_file():
        logging.debug(f'Loading P from {lang_dir}/P_{args.subset}.fst.txt')
        with open(lang_dir / f'P_{args.subset}.fst.txt') as f:
            # P is not an acceptor because there is
            # a back-off state, whose incoming arcs
            # have label #0 and aux_label eps.
            P = k2.Fsa.from_openfst(f.read(), acceptor=False)

        phone_symbol_table = k2.SymbolTable.from_file(lang_dir / 'phones.txt')
        first_phone_disambig_id = find_first_disambig_symbol(
            phone_symbol_table)

        # P.aux_labels is not needed in later computations, so
        # remove it here.
        del P.aux_labels
        # CAUTION(fangjun): The following line is crucial.
        # Arcs entering the back-off state have label equal to #0.
        # We have to change it to 0 here.
        P.labels[P.labels >= first_phone_disambig_id] = 0

        P = k2.remove_epsilon(P)
        P = k2.arc_sort(P)
        torch.save(P.as_dict(), lang_dir / f'P_{args.subset}.pt')
    else:
        logging.debug('Loading pre-compiled P')
        d = torch.load(lang_dir / f'P_{args.subset}.pt')
        P = k2.Fsa.from_dict(d)

    graph_compiler = MmiTrainingGraphCompiler(
        lexicon=lexicon,
        P=P,
        device=device,
    )
    phone_ids = lexicon.phone_symbols()

    gigaspeech = GigaSpeechAsrDataModule(args)
    train_dl = gigaspeech.train_dataloaders()
    valid_dl = gigaspeech.valid_dataloaders()

    if not torch.cuda.is_available():
        logging.error('No GPU detected!')
        sys.exit(-1)

    if use_pruned_intersect:
        logging.info('Use pruned intersect for den_lats')
    else:
        logging.info("Don't use pruned intersect for den_lats")

    logging.info("About to create model")

    if att_rate != 0.0:
        num_decoder_layers = 6
    else:
        num_decoder_layers = 0

    if model_type == "transformer":
        model = Transformer(
            num_features=80,
            nhead=args.nhead,
            d_model=args.attention_dim,
            num_classes=len(phone_ids) + 1,  # +1 for the blank symbol
            subsampling_factor=4,
            num_decoder_layers=num_decoder_layers,
            vgg_frontend=True)
    elif model_type == "conformer":
        model = Conformer(
            num_features=80,
            nhead=args.nhead,
            d_model=args.attention_dim,
            num_classes=len(phone_ids) + 1,  # +1 for the blank symbol
            subsampling_factor=4,
            num_decoder_layers=num_decoder_layers,
            vgg_frontend=True,
            is_espnet_structure=True)
    elif model_type == "contextnet":
        model = ContextNet(num_features=80, num_classes=len(phone_ids) +
                           1)  # +1 for the blank symbol
    else:
        raise NotImplementedError("Model of type " + str(model_type) +
                                  " is not implemented")

    if args.torchscript:
        logging.info('Applying TorchScript to model...')
        model = torch.jit.script(model)

    model.to(device)
    describe(model)

    if world_size > 1:
        model = DDP(model, device_ids=[rank])

    # Now for the alignment model, if any
    if args.use_ali_model:
        ali_model = TdnnLstm1b(
            num_features=80,
            num_classes=len(phone_ids) + 1,  # +1 for the blank symbol
            subsampling_factor=4)

        ali_model_fname = Path(
            f'exp-lstm-adam-ctc-musan/epoch-{args.ali_model_epoch}.pt')
        assert ali_model_fname.is_file(), \
                f'ali model filename {ali_model_fname} does not exist!'
        ali_model.load_state_dict(
            torch.load(ali_model_fname, map_location='cpu')['state_dict'])
        ali_model.to(device)

        ali_model.eval()
        ali_model.requires_grad_(False)
        logging.info(f'Use ali_model: {ali_model_fname}')
    else:
        ali_model = None
        logging.info('No ali_model')

    optimizer = Noam(model.parameters(),
                     model_size=args.attention_dim,
                     factor=args.lr_factor,
                     warm_step=args.warm_step,
                     weight_decay=args.weight_decay)

    scaler = GradScaler(enabled=args.amp)

    best_objf = np.inf
    best_valid_objf = np.inf
    best_epoch = start_epoch
    best_model_path = os.path.join(exp_dir, 'best_model.pt')
    best_epoch_info_filename = os.path.join(exp_dir, 'best-epoch-info')
    global_batch_idx_train = 0  # for logging only

    if start_epoch > 0:
        model_path = os.path.join(exp_dir,
                                  'epoch-{}.pt'.format(start_epoch - 1))
        ckpt = load_checkpoint(filename=model_path,
                               model=model,
                               optimizer=optimizer,
                               scaler=scaler)
        best_objf = ckpt['objf']
        best_valid_objf = ckpt['valid_objf']
        global_batch_idx_train = ckpt['global_batch_idx_train']
        logging.info(
            f"epoch = {ckpt['epoch']}, objf = {best_objf}, valid_objf = {best_valid_objf}"
        )

    for epoch in range(start_epoch, num_epochs):
        train_dl.sampler.set_epoch(epoch)
        curr_learning_rate = optimizer._rate
        if tb_writer is not None:
            tb_writer.add_scalar('train/learning_rate', curr_learning_rate,
                                 global_batch_idx_train)
            tb_writer.add_scalar('train/epoch', epoch, global_batch_idx_train)

        logging.info('epoch {}, learning rate {}'.format(
            epoch, curr_learning_rate))
        objf, valid_objf, global_batch_idx_train = train_one_epoch(
            dataloader=train_dl,
            valid_dataloader=valid_dl,
            model=model,
            ali_model=ali_model,
            device=device,
            graph_compiler=graph_compiler,
            use_pruned_intersect=use_pruned_intersect,
            optimizer=optimizer,
            accum_grad=accum_grad,
            den_scale=den_scale,
            att_rate=att_rate,
            current_epoch=epoch,
            tb_writer=tb_writer,
            num_epochs=num_epochs,
            global_batch_idx_train=global_batch_idx_train,
            world_size=world_size,
            scaler=scaler)
        # the lower, the better
        if valid_objf < best_valid_objf:
            best_valid_objf = valid_objf
            best_objf = objf
            best_epoch = epoch
            save_checkpoint(filename=best_model_path,
                            optimizer=None,
                            scheduler=None,
                            scaler=None,
                            model=model,
                            epoch=epoch,
                            learning_rate=curr_learning_rate,
                            objf=objf,
                            valid_objf=valid_objf,
                            global_batch_idx_train=global_batch_idx_train,
                            local_rank=rank,
                            torchscript=args.torchscript_epoch != -1
                            and epoch >= args.torchscript_epoch)
            save_training_info(filename=best_epoch_info_filename,
                               model_path=best_model_path,
                               current_epoch=epoch,
                               learning_rate=curr_learning_rate,
                               objf=objf,
                               best_objf=best_objf,
                               valid_objf=valid_objf,
                               best_valid_objf=best_valid_objf,
                               best_epoch=best_epoch,
                               local_rank=rank)

        # we always save the model for every epoch
        model_path = os.path.join(exp_dir, 'epoch-{}.pt'.format(epoch))
        save_checkpoint(filename=model_path,
                        optimizer=optimizer,
                        scheduler=None,
                        scaler=scaler,
                        model=model,
                        epoch=epoch,
                        learning_rate=curr_learning_rate,
                        objf=objf,
                        valid_objf=valid_objf,
                        global_batch_idx_train=global_batch_idx_train,
                        local_rank=rank,
                        torchscript=args.torchscript_epoch != -1
                        and epoch >= args.torchscript_epoch)
        epoch_info_filename = os.path.join(exp_dir,
                                           'epoch-{}-info'.format(epoch))
        save_training_info(filename=epoch_info_filename,
                           model_path=model_path,
                           current_epoch=epoch,
                           learning_rate=curr_learning_rate,
                           objf=objf,
                           best_objf=best_objf,
                           valid_objf=valid_objf,
                           best_valid_objf=best_valid_objf,
                           best_epoch=best_epoch,
                           local_rank=rank)

    logging.warning('Done')
    if world_size > 1:
        torch.distributed.barrier()
        cleanup_dist()
Esempio n. 5
0
def main():
    parser = get_parser()
    args = parser.parse_args()

    model_type = args.model_type
    epoch = args.epoch
    avg = args.avg
    att_rate = args.att_rate
    num_paths = args.num_paths
    use_lm_rescoring = args.use_lm_rescoring
    use_whole_lattice = False
    if use_lm_rescoring and num_paths < 1:
        # It doesn't make sense to use n-best list for rescoring
        # when n is less than 1
        use_whole_lattice = True

    output_beam_size = args.output_beam_size

    exp_dir = Path('exp-' + model_type + '-mmi-att-sa-vgg-normlayer')
    setup_logger('{}/log/log-decode'.format(exp_dir), log_level='debug')

    logging.info(f'output_beam_size: {output_beam_size}')

    # load L, G, symbol_table
    lang_dir = Path('data/lang_nosp')
    symbol_table = k2.SymbolTable.from_file(lang_dir / 'words.txt')
    phone_symbol_table = k2.SymbolTable.from_file(lang_dir / 'phones.txt')

    phone_ids = get_phone_symbols(phone_symbol_table)

    phone_ids_with_blank = [0] + phone_ids
    ctc_topo = k2.arc_sort(build_ctc_topo(phone_ids_with_blank))

    logging.debug("About to load model")
    # Note: Use "export CUDA_VISIBLE_DEVICES=N" to setup device id to N
    # device = torch.device('cuda', 1)
    device = torch.device('cuda')

    if att_rate != 0.0:
        num_decoder_layers = 6
    else:
        num_decoder_layers = 0

    if model_type == "transformer":
        model = Transformer(
            num_features=40,
            nhead=args.nhead,
            d_model=args.attention_dim,
            num_classes=len(phone_ids) + 1,  # +1 for the blank symbol
            subsampling_factor=4,
            num_decoder_layers=num_decoder_layers,
            vgg_frontend=args.vgg_fronted)
    elif model_type == "conformer":
        model = Conformer(
            num_features=40,
            nhead=args.nhead,
            d_model=args.attention_dim,
            num_classes=len(phone_ids) + 1,  # +1 for the blank symbol
            subsampling_factor=4,
            num_decoder_layers=num_decoder_layers,
            vgg_frontend=args.vgg_frontend,
            is_espnet_structure=args.is_espnet_structure)
    elif model_type == "contextnet":
        model = ContextNet(num_features=40, num_classes=len(phone_ids) +
                           1)  # +1 for the blank symbol
    else:
        raise NotImplementedError("Model of type " + str(model_type) +
                                  " is not implemented")

    if avg == 1:
        checkpoint = os.path.join(exp_dir, 'epoch-' + str(epoch - 1) + '.pt')
        load_checkpoint(checkpoint, model)
    else:
        checkpoints = [
            os.path.join(exp_dir, 'epoch-' + str(avg_epoch) + '.pt')
            for avg_epoch in range(epoch - avg, epoch)
        ]
        average_checkpoint(checkpoints, model)

    model.to(device)
    model.eval()

    if not os.path.exists(lang_dir / 'HLG.pt'):
        logging.debug("Loading L_disambig.fst.txt")
        with open(lang_dir / 'L_disambig.fst.txt') as f:
            L = k2.Fsa.from_openfst(f.read(), acceptor=False)
        logging.debug("Loading G.fst.txt")
        with open(lang_dir / 'G.fst.txt') as f:
            G = k2.Fsa.from_openfst(f.read(), acceptor=False)
        first_phone_disambig_id = find_first_disambig_symbol(
            phone_symbol_table)
        first_word_disambig_id = find_first_disambig_symbol(symbol_table)
        HLG = compile_HLG(L=L,
                          G=G,
                          H=ctc_topo,
                          labels_disambig_id_start=first_phone_disambig_id,
                          aux_labels_disambig_id_start=first_word_disambig_id)
        torch.save(HLG.as_dict(), lang_dir / 'HLG.pt')
    else:
        logging.debug("Loading pre-compiled HLG")
        d = torch.load(lang_dir / 'HLG.pt')
        HLG = k2.Fsa.from_dict(d)

    logging.debug('Decoding without LM rescoring')
    G = None
    if num_paths > 1:
        logging.debug(f'Use n-best list decoding, n is {num_paths}')
    else:
        logging.debug('Use 1-best decoding')

    logging.debug("convert HLG to device")
    HLG = HLG.to(device)
    HLG.aux_labels = k2.ragged.remove_values_eq(HLG.aux_labels, 0)
    HLG.requires_grad_(False)

    if not hasattr(HLG, 'lm_scores'):
        HLG.lm_scores = HLG.scores.clone()

    # load dataset
    feature_dir = Path('exp/data')
    logging.info("About to get test cuts")
    cuts_test = CutSet.from_json(feature_dir / 'cuts_test.json.gz')
    logging.info("About to create test dataset")
    test = K2SpeechRecognitionDataset(cuts_test)
    test_sampler = SingleCutSampler(cuts_test, max_frames=12000)
    logging.info("About to create test dataloader")
    test_dl = torch.utils.data.DataLoader(test,
                                          sampler=test_sampler,
                                          batch_size=None,
                                          num_workers=1)

    logging.info("About to decode")

    results = decode(dataloader=test_dl,
                     model=model,
                     HLG=HLG,
                     symbols=symbol_table,
                     num_paths=num_paths,
                     G=G,
                     use_whole_lattice=use_whole_lattice,
                     output_beam_size=output_beam_size)

    s = ''
    results2 = []
    for ref, hyp in results:
        s += f'ref={ref}\n'
        s += f'hyp={hyp}\n'
        results2.append((list(''.join(ref)), list(''.join(hyp))))
    logging.info(s)
    # compute WER
    dists = [edit_distance(r, h) for r, h in results]
    dists2 = [edit_distance(r, h) for r, h in results2]
    errors = {
        key: sum(dist[key] for dist in dists)
        for key in ['sub', 'ins', 'del', 'total']
    }
    errors2 = {
        key: sum(dist[key] for dist in dists2)
        for key in ['sub', 'ins', 'del', 'total']
    }
    total_words = sum(len(ref) for ref, _ in results)
    total_chars = sum(len(ref) for ref, _ in results2)
    # Print Kaldi-like message:
    # %WER 8.20 [ 4459 / 54402, 695 ins, 427 del, 3337 sub ]
    logging.info(
        f'%WER {errors["total"] / total_words:.2%} '
        f'[{errors["total"]} / {total_words}, {errors["ins"]} ins, {errors["del"]} del, {errors["sub"]} sub ]'
    )
    logging.info(
        f'%CER {errors2["total"] / total_chars:.2%} '
        f'[{errors2["total"]} / {total_chars}, {errors2["ins"]} ins, {errors2["del"]} del, {errors2["sub"]} sub ]'
    )