Esempio n. 1
0
    def setUp(self):

        os.chdir(os.path.dirname(__file__))

        self.network_path = os.path.join("networks", "network_testing_input")
        self.config_file = os.path.join(self.network_path,
                                        "network-config.json")
        self.position_file = os.path.join(self.network_path,
                                          "network-neuron-positions.hdf5")
        self.save_file = os.path.join(self.network_path, "voxels",
                                      "network-putative-synapses.hdf5")

        # Setup network so we can test input generation
        from snudda.init.init import SnuddaInit
        cell_spec = os.path.join(os.path.dirname(__file__), "validation")
        cnc = SnuddaInit(struct_def={},
                         config_file=self.config_file,
                         random_seed=1234)
        cnc.define_striatum(num_dSPN=5,
                            num_iSPN=0,
                            num_FS=5,
                            num_LTS=0,
                            num_ChIN=0,
                            volume_type="cube",
                            neurons_dir=cell_spec)
        cnc.write_json(self.config_file)

        # Place neurons
        from snudda.place.place import SnuddaPlace
        npn = SnuddaPlace(
            config_file=self.config_file,
            log_file=None,
            verbose=True,
            d_view=
            None,  # TODO: If d_view is None code run sin serial, add test parallel
            h5libver="latest")
        npn.parse_config()
        npn.write_data(self.position_file)

        # Detect
        self.sd = SnuddaDetect(config_file=self.config_file,
                               position_file=self.position_file,
                               save_file=self.save_file,
                               rc=None,
                               hyper_voxel_size=120,
                               verbose=True)

        self.sd.detect(restart_detection_flag=True)

        # Prune
        self.network_file = os.path.join(self.network_path,
                                         "network-synapses.hdf5")

        sp = SnuddaPrune(network_path=self.network_path,
                         config_file=None)  # Use default config file
        sp.prune(pre_merge_only=False)
Esempio n. 2
0
    def setup_network(self, neurons_path, num_replicas=10, neuron_types=None):

        # TODO: num_replicas should be set by a parameter, it affects how many duplicates of each neuron
        # and thus how many steps we have between n_min and n_max number of inputs specified.
        config_def = self.create_network_config(neurons_path=neurons_path,
                                                num_replicas=num_replicas,
                                                neuron_types=neuron_types)

        print(
            f"Writing network config file to {self.network_config_file_name}")
        with open(self.network_config_file_name, "w") as f:
            json.dump(config_def, f, indent=2, cls=NumpyEncoder)

        create_cube_mesh(os.path.join("data", "mesh", "InputTestMesh.obj"),
                         [0, 0, 0],
                         1e-3,
                         description="Mesh file used for Input Scaling")

        # Write the neurons path to file
        self.write_tuning_info()

        from snudda.place.place import SnuddaPlace
        from snudda.detect.detect import SnuddaDetect
        from snudda.detect.prune import SnuddaPrune

        sp = SnuddaPlace(network_path=self.network_path)
        sp.parse_config()
        sp.write_data()

        sd = SnuddaDetect(network_path=self.network_path)
        sd.detect()

        sp = SnuddaPrune(network_path=self.network_path)
        sp.prune()
Esempio n. 3
0
    def prune_synapses(self, args):
        # self.networkPath = args.path
        print("Prune synapses")
        print("Network path: " + str(self.network_path))

        from snudda.detect.prune import SnuddaPrune

        log_filename = os.path.join(self.network_path, "log",
                                    "logFile-synapse-pruning.txt")

        random_seed = args.randomseed

        self.setup_log_file(log_filename)  # sets self.logfile

        if args.parallel:
            self.setup_parallel()  # sets self.d_view and self.lb_view

        # Optionally set this
        scratch_path = None

        if args.merge_only:
            pre_merge_only = True
        else:
            pre_merge_only = False

        print(f"preMergeOnly : {pre_merge_only}")

        if args.h5legacy:
            h5libver = "earliest"
        else:
            h5libver = "latest"  # default

        sp = SnuddaPrune(network_path=self.network_path,
                         logfile=self.logfile,
                         logfile_name=log_filename,
                         config_file=args.config_file,
                         d_view=self.d_view,
                         lb_view=self.lb_view,
                         scratch_path=scratch_path,
                         h5libver=h5libver,
                         random_seed=random_seed,
                         verbose=args.verbose)

        sp.prune(pre_merge_only=pre_merge_only)

        self.stop_parallel()
        self.close_log_file()
Esempio n. 4
0
    def prune_network(self, pruning_config=None, fig_name=None, title=None, verbose=False, plot_network=True,
                      random_seed=None, n_repeats=None):

        if n_repeats is None:
            n_repeats = self.n_repeats

        work_log = os.path.join(self.network_path, "log", "network-detect-worklog.hdf5")
        pruned_output = os.path.join(self.network_path, "network-synapses.hdf5")

        if pruning_config is not None and not os.path.exists(pruning_config):
            pruning_config = os.path.join(self.network_path, pruning_config)

        # We keep temp files
        sp = SnuddaPrune(network_path=self.network_path, config_file=pruning_config,
                         verbose=verbose, keep_files=True, random_seed=random_seed)  # Use default config file
        sp.prune()

        n_synapses = sp.out_file["network/synapses"].shape[0]
        n_gap_junctions = sp.out_file["network/gapJunctions"].shape[0]

        sp = []

        plot_axon = True
        plot_dendrite = True
        #plot_axon = np.ones((20,), dtype=bool)
        #plot_dendrite = np.ones((20,), dtype=bool)
        #plot_axon[:10] = False
        #plot_dendrite[10:] = False

        if plot_network:
            pn = PlotNetwork(pruned_output)
            plt, ax = pn.plot(fig_name=fig_name, show_axis=False,
                              plot_axon=plot_axon, plot_dendrite=plot_dendrite,
                              title=title, title_pad=-14,
                              elev_azim=(90, 0))

            if n_repeats > 1:
                n_syn_mean, n_syn_std, _, _ = self.gather_pruning_statistics(pruning_config=pruning_config, n_repeats=n_repeats)
                plt.figtext(0.5, 0.15, f"(${n_syn_mean:.1f} \pm {n_syn_std:.1f}$)", ha="center", fontsize=16)
                plt.savefig(fig_name, dpi=300, bbox_inches='tight')

            # Load the pruned data and check it
            # sl = SnuddaLoad(pruned_output)

        return n_synapses, n_gap_junctions
Esempio n. 5
0
    def prune_network(self, pruning_config=None, fig_name=None, title=None):

        work_log = os.path.join(self.network_path, "log", "network-detect-worklog.hdf5")
        pruned_output = os.path.join(self.network_path, "network-synapses.hdf5")

        if pruning_config is not None and not os.path.exists(pruning_config):
            pruning_config = os.path.join(self.network_path, pruning_config)

        sp = SnuddaPrune(network_path=self.network_path, config_file=pruning_config)  # Use default config file
        sp.prune(pre_merge_only=False)
        sp = []

        plot_axon = True
        plot_dendrite = True
        #plot_axon = np.ones((20,), dtype=bool)
        #plot_dendrite = np.ones((20,), dtype=bool)
        #plot_axon[:10] = False
        #plot_dendrite[10:] = False

        pn = PlotNetwork(pruned_output)
        plt, ax = pn.plot(fig_name=fig_name, show_axis=False,
                          plot_axon=plot_axon, plot_dendrite=plot_dendrite,
                          title=title, title_pad=-14,
                          elev_azim=(90, 0))
    def __init__(self):

        if os.path.dirname(__file__):
            os.chdir(os.path.dirname(__file__))

        self.network_path = "touch_detection_illustration_network"
        self.config_file = os.path.join(self.network_path, "network-config.json")
        self.position_file = os.path.join(self.network_path, "network-neuron-positions.hdf5")
        self.save_file = os.path.join(self.network_path, "voxels", "network-putative-synapses.hdf5")

        create_cube_mesh(file_name=os.path.join(self.network_path, "mesh", "simple_mesh.obj"),
                         centre_point=(0, 0, 0),
                         side_len=500e-6)

        sp = SnuddaPlace(config_file=self.config_file, d_view=None)
        sp.parse_config()
        sp.write_data(self.position_file)

        self.sd = SnuddaDetect(config_file=self.config_file, position_file=self.position_file,
                               save_file=self.save_file, rc=None,
                               hyper_voxel_size=150)

        # Reposition the neurons so we know how many synapses and where they will be located before pruning
        neuron_positions = np.array([[0, 59, 0],  # Postsynaptiska
                                     [0, 89, 0],
                                     [0, 119, 0],
                                     [0, 149, 0],
                                     [0, 179, 0],
                                     [0, 209, 0],
                                     [0, 239, 0],
                                     [0, 269, 0],
                                     [0, 299, 0],
                                     [0, 329, 0],
                                     [59, 0, 0],  # Presynaptiska
                                     [89, 0, 0],
                                     [119, 0, 0],
                                     [149, 0, 0],
                                     [179, 0, 0],
                                     [209, 0, 0],
                                     [239, 0, 0],
                                     [269, 0, 0],
                                     [299, 0, 0],
                                     [329, 0, 0],
                                     ]) * 1e-6

        for idx, pos in enumerate(neuron_positions):
            self.sd.neurons[idx]["position"] = pos

        ang = -np.pi / 2
        R_x = np.array([[1, 0, 0],
                        [0, np.cos(ang), -np.sin(ang)],
                        [0, np.sin(ang), np.cos(ang)]])

        ang = np.pi / 2
        R_y = np.array([[np.cos(ang), 0, np.sin(ang)],
                        [0, 1, 0],
                        [-np.sin(ang), 0, np.cos(ang)]])

        for idx in range(0, 10):  # Post synaptic neurons
            self.sd.neurons[idx]["rotation"] = R_x

        for idx in range(10, 20):  # Presynaptic neurons
            self.sd.neurons[idx]["rotation"] = R_y

        self.sd.detect(restart_detection_flag=True)

        # Also update so that the new positions are saved in the place file
        rn = RepositionNeurons(self.position_file)
        for neuron_info in self.sd.neurons:
            rn.place(neuron_info["neuronID"], position=neuron_info["position"], rotation=neuron_info["rotation"],
                     verbose=False)
        rn.close()

        sp = SnuddaPrune(network_path=self.network_path)  # Use default config file
        sp.prune()
        sp = []
Esempio n. 7
0
    def setUp(self):
        from snudda.place.create_cube_mesh import create_cube_mesh

        # Create cube meshes
        self.network_path = os.path.join("networks", "network_testing_project")
        mesh_file_a = os.path.join(self.network_path, "mesh", "volume_A.obj")
        mesh_file_b = os.path.join(self.network_path, "mesh", "volume_B.obj")

        create_cube_mesh(mesh_file_a, [5e-3, 0, 0], 300e-6,
                         "Volume A - connect structures example")
        create_cube_mesh(mesh_file_b, [-5e-3, 0, 0], 300e-6,
                         "Volume B - connect structures example")

        # Define network

        from snudda.init.init import SnuddaInit

        cnc = SnuddaInit(network_path=self.network_path, random_seed=123)

        cnc.define_structure(struct_name="VolumeA",
                             struct_mesh=mesh_file_a,
                             d_min=15e-6,
                             mesh_bin_width=50e-6)
        cnc.define_structure(struct_name="VolumeB",
                             struct_mesh=mesh_file_b,
                             d_min=15e-6,
                             mesh_bin_width=50e-6)

        cnc.add_neurons(name="dSPN",
                        num_neurons=20,
                        volume_id="VolumeA",
                        neuron_dir=os.path.join("$DATA", "neurons", "striatum",
                                                "dspn"))
        cnc.add_neurons(name="iSPN",
                        num_neurons=20,
                        volume_id="VolumeB",
                        neuron_dir=os.path.join("$DATA", "neurons", "striatum",
                                                "ispn"))

        # Add the projection we want to test dSPN->iSPN
        proj_file = os.path.join("data", "ExampleProjection.json")

        cnc.neuron_projection(neuron_name="dSPN",
                              target_name="iSPN",
                              projection_name="ExampleProjection",
                              projection_file=proj_file,
                              source_volume="VolumeA",
                              dest_volume="VolumeB",
                              projection_radius=100e-6,
                              number_of_targets=[10, 5],
                              number_of_synapses=[10, 5],
                              dendrite_synapse_density="1",
                              connection_type="GABA",
                              dist_pruning=None,
                              f1=0.9,
                              soft_max=None,
                              mu2=None,
                              a3=None)

        # Also add dSPN-dSPN and iSPN-iSPN synapses
        # Note we do NOT add dSPN-iSPN again this way, as that would overwrite the above connections
        # (The above neuron_projection will also do normal touch detection)

        SPN2SPNdistDepPruning = "1-exp(-(0.4*d/60e-6)**2)"

        MSD1gGABA = [0.24e-9, 0.1e-9]
        MSD2gGABA = [0.24e-9, 0.1e-9]

        MSD1GABAfailRate = 0.7  # Taverna 2008, figure 2
        MSD2GABAfailRate = 0.4  # Taverna 2008, 2mM

        pfdSPNdSPN = os.path.join("$DATA", "synapses", "striatum",
                                  "PlanertFitting-DD-tmgaba-fit.json")
        pfdSPNiSPN = os.path.join("$DATA", "synapses", "striatum",
                                  "PlanertFitting-DI-tmgaba-fit.json")
        pfiSPNdSPN = os.path.join("$DATA", "synapses", "striatum",
                                  "PlanertFitting-ID-tmgaba-fit.json")
        pfiSPNiSPN = os.path.join("$DATA", "synapses", "striatum",
                                  "PlanertFitting-II-tmgaba-fit.json")

        cnc.add_neuron_target(neuron_name="dSPN",
                              target_name="dSPN",
                              connection_type="GABA",
                              dist_pruning=SPN2SPNdistDepPruning,
                              f1=0.38,
                              soft_max=3,
                              mu2=2.4,
                              a3=1.0,
                              conductance=MSD1gGABA,
                              parameter_file=pfdSPNdSPN,
                              mod_file="tmGabaA",
                              channel_param_dictionary={
                                  "tau1": (1.3e-3, 1e3),
                                  "tau2": (12.4e-3, 1e3),
                                  "failRate": MSD1GABAfailRate
                              })

        cnc.add_neuron_target(neuron_name="iSPN",
                              target_name="iSPN",
                              connection_type="GABA",
                              dist_pruning=SPN2SPNdistDepPruning,
                              f1=0.55,
                              soft_max=4,
                              mu2=2.4,
                              a3=1.0,
                              conductance=MSD2gGABA,
                              parameter_file=pfiSPNiSPN,
                              mod_file="tmGabaA",
                              channel_param_dictionary={
                                  "tau1": (1.3e-3, 1e3),
                                  "tau2": (12.4e-3, 1e3),
                                  "failRate": MSD2GABAfailRate
                              })

        cnc.write_json()

        # Place neurons, then detect, project and prune

        from snudda.place.place import SnuddaPlace
        sp = SnuddaPlace(network_path=self.network_path, verbose=True)
        sp.parse_config()
        sp.write_data()

        from snudda.detect.detect import SnuddaDetect
        sd = SnuddaDetect(network_path=self.network_path,
                          hyper_voxel_size=100,
                          verbose=True)
        sd.detect()

        from snudda.detect.project import SnuddaProject
        sp = SnuddaProject(network_path=self.network_path)
        sp.project()
        sp.write()

        from snudda.detect.prune import SnuddaPrune
        sp = SnuddaPrune(network_path=self.network_path, verbose=True)
        sp.prune()
Esempio n. 8
0
    def test_project(self):

        # Are there connections dSPN->iSPN
        from snudda.utils.load import SnuddaLoad
        network_file = os.path.join(self.network_path, "network-synapses.hdf5")
        sl = SnuddaLoad(network_file)

        dspn_id_list = sl.get_cell_id_of_type("dSPN")
        ispn_id_list = sl.get_cell_id_of_type("iSPN")

        tot_proj_ctr = 0

        for dspn_id in dspn_id_list:
            for ispn_id in ispn_id_list:

                synapses, synapse_coords = sl.find_synapses(pre_id=dspn_id,
                                                            post_id=ispn_id)
                if synapses is not None:
                    tot_proj_ctr += synapses.shape[0]

        with self.subTest(stage="projection_exists"):
            # There should be projection synapses between dSPN and iSPN in this toy example
            self.assertTrue(tot_proj_ctr > 0)

        tot_dd_syn_ctr = 0
        for dspn_id in dspn_id_list:
            for dspn_id2 in dspn_id_list:

                synapses, synapse_coords = sl.find_synapses(pre_id=dspn_id,
                                                            post_id=dspn_id2)
                if synapses is not None:
                    tot_dd_syn_ctr += synapses.shape[0]

        tot_ii_syn_ctr = 0
        for ispn_id in ispn_id_list:
            for ispn_id2 in ispn_id_list:

                synapses, synapse_coords = sl.find_synapses(pre_id=ispn_id,
                                                            post_id=ispn_id2)
                if synapses is not None:
                    tot_ii_syn_ctr += synapses.shape[0]

        with self.subTest(stage="normal_synapses_exist"):
            # In this toy example neurons are quite sparsely placed, but we should have at least some
            # synapses
            self.assertTrue(tot_dd_syn_ctr > 0)
            self.assertTrue(tot_ii_syn_ctr > 0)

        # We need to run in parallel also to verify we get same result (same random seed)

        serial_synapses = sl.data["synapses"].copy()
        del sl  # Close old file so we can overwrite it

        os.environ["IPYTHONDIR"] = os.path.join(os.path.abspath(os.getcwd()),
                                                ".ipython")
        os.environ["IPYTHON_PROFILE"] = "default"
        os.system(
            "ipcluster start -n 4 --profile=$IPYTHON_PROFILE --ip=127.0.0.1&")
        time.sleep(10)

        # Run place, detect and prune in parallel by passing rc
        from ipyparallel import Client
        u_file = os.path.join(".ipython", "profile_default", "security",
                              "ipcontroller-client.json")
        rc = Client(url_file=u_file, timeout=120, debug=False)
        d_view = rc.direct_view(
            targets='all')  # rc[:] # Direct view into clients

        from snudda.detect.detect import SnuddaDetect
        sd = SnuddaDetect(network_path=self.network_path,
                          hyper_voxel_size=100,
                          rc=rc,
                          verbose=True)
        sd.detect()

        from snudda.detect.project import SnuddaProject
        # TODO: Currently SnuddaProject only runs in serial
        sp = SnuddaProject(network_path=self.network_path)
        sp.project()
        sp.write()

        from snudda.detect.prune import SnuddaPrune
        # Prune has different methods for serial and parallel execution, important to test it!
        sp = SnuddaPrune(network_path=self.network_path, rc=rc, verbose=True)
        sp.prune()

        with self.subTest(stage="check-parallel-identical"):
            sl2 = SnuddaLoad(network_file)
            parallel_synapses = sl2.data["synapses"].copy()

            # ParameterID, sec_X etc are randomised in hyper voxel, so you need to use same
            # hypervoxel size for reproducability between serial and parallel execution

            # All synapses should be identical regardless of serial or parallel execution path
            self.assertTrue((serial_synapses == parallel_synapses).all())

        os.system("ipcluster stop")
Esempio n. 9
0
    def test_prune(self):

        pruned_output = os.path.join(self.network_path,
                                     "network-synapses.hdf5")

        with self.subTest(stage="No-pruning"):

            sp = SnuddaPrune(network_path=self.network_path,
                             config_file=None,
                             verbose=True,
                             keep_files=True)  # Use default config file
            sp.prune()
            sp = []

            # Load the pruned data and check it

            sl = SnuddaLoad(pruned_output)
            # TODO: Call a plot function to plot entire network with synapses and all

            self.assertEqual(sl.data["nSynapses"], (20 * 8 + 10 * 2) *
                             2)  # Update, now AMPA+GABA, hence *2 at end

            # This checks that all synapses are in order
            # The synapse sort order is destID, sourceID, synapsetype (channel model id).

            syn = sl.data["synapses"][:sl.data["nSynapses"], :]
            syn_order = (syn[:, 1] * len(self.sd.neurons) + syn[:, 0]
                         ) * 12 + syn[:, 6]  # The 12 is maxChannelModelID
            self.assertTrue((np.diff(syn_order) >= 0).all())

            # Note that channel model id is dynamically allocated, starting from 10 (GJ have ID 3)
            # Check that correct number of each type
            self.assertEqual(np.sum(sl.data["synapses"][:, 6] == 10),
                             20 * 8 + 10 * 2)
            self.assertEqual(np.sum(sl.data["synapses"][:, 6] == 11),
                             20 * 8 + 10 * 2)

            self.assertEqual(sl.data["nGapJunctions"], 4 * 4 * 4)
            gj = sl.data["gapJunctions"][:sl.data["nGapJunctions"], :2]
            gj_order = gj[:, 1] * len(self.sd.neurons) + gj[:, 0]
            self.assertTrue((np.diff(gj_order) >= 0).all())

        with self.subTest(stage="load-testing"):
            sl = SnuddaLoad(pruned_output, verbose=True)

            # Try and load a neuron
            n = sl.load_neuron(0)
            self.assertTrue(type(n) == NeuronMorphology)

            syn_ctr = 0
            for s in sl.synapse_iterator(chunk_size=50):
                syn_ctr += s.shape[0]
            self.assertEqual(syn_ctr, sl.data["nSynapses"])

            gj_ctr = 0
            for gj in sl.gap_junction_iterator(chunk_size=50):
                gj_ctr += gj.shape[0]
            self.assertEqual(gj_ctr, sl.data["nGapJunctions"])

            syn, syn_coords = sl.find_synapses(pre_id=14)
            self.assertTrue((syn[:, 0] == 14).all())
            self.assertEqual(syn.shape[0], 40)

            syn, syn_coords = sl.find_synapses(post_id=3)
            self.assertTrue((syn[:, 1] == 3).all())
            self.assertEqual(syn.shape[0], 36)

            cell_id_perm = sl.get_cell_id_of_type("ballanddoublestick",
                                                  random_permute=True,
                                                  num_neurons=28)
            cell_id = sl.get_cell_id_of_type("ballanddoublestick",
                                             random_permute=False)

            self.assertEqual(len(cell_id_perm), 28)
            self.assertEqual(len(cell_id), 28)

            for cid in cell_id_perm:
                self.assertTrue(cid in cell_id)

        # It is important merge file has synapses sorted with dest_id, source_id as sort order since during pruning
        # we assume this to be able to quickly find all synapses on post synaptic cell.
        # TODO: Also include the ChannelModelID in sorting check
        with self.subTest("Checking-merge-file-sorted"):

            for mf in [
                    "temp/synapses-for-neurons-0-to-28-MERGE-ME.hdf5",
                    "temp/gapJunctions-for-neurons-0-to-28-MERGE-ME.hdf5",
                    "network-synapses.hdf5"
            ]:

                merge_file = os.path.join(self.network_path, mf)

                sl = SnuddaLoad(merge_file, verbose=True)
                if "synapses" in sl.data:
                    syn = sl.data["synapses"][:sl.data["nSynapses"], :2]
                    syn_order = syn[:, 1] * len(self.sd.neurons) + syn[:, 0]
                    self.assertTrue((np.diff(syn_order) >= 0).all())

                if "gapJunctions" in sl.data:
                    gj = sl.data["gapJunctions"][:sl.data["nGapJunctions"], :2]
                    gj_order = gj[:, 1] * len(self.sd.neurons) + gj[:, 0]
                    self.assertTrue((np.diff(gj_order) >= 0).all())

        with self.subTest("synapse-f1"):
            # Test of f1
            testing_config_file = os.path.join(self.network_path,
                                               "network-config-test-1.json")
            sp = SnuddaPrune(network_path=self.network_path,
                             config_file=testing_config_file,
                             verbose=True,
                             keep_files=True)  # Use default config file
            sp.prune()

            # Load the pruned data and check it

            sl = SnuddaLoad(pruned_output, verbose=True)
            # Setting f1=0.5 in config should remove 50% of GABA synapses, but does so randomly, for AMPA we used f1=0.9
            gaba_id = sl.data["connectivityDistributions"][
                "ballanddoublestick",
                "ballanddoublestick"]["GABA"]["channelModelID"]
            ampa_id = sl.data["connectivityDistributions"][
                "ballanddoublestick",
                "ballanddoublestick"]["AMPA"]["channelModelID"]

            n_gaba = np.sum(sl.data["synapses"][:, 6] == gaba_id)
            n_ampa = np.sum(sl.data["synapses"][:, 6] == ampa_id)

            self.assertTrue((20 * 8 + 10 * 2) * 0.5 -
                            10 < n_gaba < (20 * 8 + 10 * 2) * 0.5 + 10)
            self.assertTrue((20 * 8 + 10 * 2) * 0.9 -
                            10 < n_ampa < (20 * 8 + 10 * 2) * 0.9 + 10)

        with self.subTest("synapse-softmax"):
            # Test of softmax
            testing_config_file = os.path.join(
                self.network_path, "network-config-test-2.json"
            )  # Only GABA synapses in this config
            sp = SnuddaPrune(network_path=self.network_path,
                             config_file=testing_config_file,
                             verbose=True,
                             keep_files=True)  # Use default config file
            sp.prune()

            # Load the pruned data and check it
            sl = SnuddaLoad(pruned_output)
            # Softmax reduces number of synapses
            self.assertTrue(sl.data["nSynapses"] < 20 * 8 + 10 * 2)

        with self.subTest("synapse-mu2"):
            # Test of mu2
            testing_config_file = os.path.join(self.network_path,
                                               "network-config-test-3.json")
            sp = SnuddaPrune(network_path=self.network_path,
                             config_file=testing_config_file,
                             verbose=True,
                             keep_files=True)  # Use default config file
            sp.prune()

            # Load the pruned data and check it
            sl = SnuddaLoad(pruned_output)
            # With mu2 having 2 synapses means 50% chance to keep them, having 1 will be likely to have it removed
            self.assertTrue(
                20 * 8 * 0.5 - 10 < sl.data["nSynapses"] < 20 * 8 * 0.5 + 10)

        with self.subTest("synapse-a3"):
            # Test of a3
            testing_config_file = os.path.join(self.network_path,
                                               "network-config-test-4.json")
            sp = SnuddaPrune(network_path=self.network_path,
                             config_file=testing_config_file,
                             verbose=True,
                             keep_files=True)  # Use default config file
            sp.prune()

            # Load the pruned data and check it
            sl = SnuddaLoad(pruned_output)

            # a3=0.6 means 40% chance to remove all synapses between a pair
            self.assertTrue(
                (20 * 8 + 10 * 2) * 0.6 -
                14 < sl.data["nSynapses"] < (20 * 8 + 10 * 2) * 0.6 + 14)

        with self.subTest("synapse-distance-dependent-pruning"):
            # Testing distance dependent pruning
            testing_config_file = os.path.join(self.network_path,
                                               "network-config-test-5.json")
            sp = SnuddaPrune(network_path=self.network_path,
                             config_file=testing_config_file,
                             verbose=True,
                             keep_files=True)  # Use default config file
            sp.prune()

            # Load the pruned data and check it
            sl = SnuddaLoad(pruned_output)

            # "1*(d >= 100e-6)" means we remove all synapses closer than 100 micrometers
            self.assertEqual(sl.data["nSynapses"], 20 * 6)
            self.assertTrue(
                (sl.data["synapses"][:, 8] >=
                 100).all())  # Column 8 -- distance to soma in micrometers

        # TODO: Need to do same test for Gap Junctions also -- but should be same results, since same codebase
        with self.subTest("gap-junction-f1"):
            # Test of f1
            testing_config_file = os.path.join(self.network_path,
                                               "network-config-test-6.json")
            sp = SnuddaPrune(network_path=self.network_path,
                             config_file=testing_config_file,
                             verbose=True,
                             keep_files=True)  # Use default config file
            sp.prune()

            # Load the pruned data and check it

            sl = SnuddaLoad(pruned_output)
            # Setting f1=0.7 in config should remove 30% of gap junctions, but does so randomly
            self.assertTrue(
                64 * 0.7 - 10 < sl.data["nGapJunctions"] < 64 * 0.7 + 10)

        with self.subTest("gap-junction-softmax"):
            # Test of softmax
            testing_config_file = os.path.join(self.network_path,
                                               "network-config-test-7.json")
            sp = SnuddaPrune(network_path=self.network_path,
                             config_file=testing_config_file,
                             verbose=True,
                             keep_files=True)  # Use default config file
            sp.prune()

            # Load the pruned data and check it
            sl = SnuddaLoad(pruned_output)
            # Softmax reduces number of synapses
            self.assertTrue(sl.data["nGapJunctions"] < 16 * 2 + 10)

        with self.subTest("gap-junction-mu2"):
            # Test of mu2
            testing_config_file = os.path.join(self.network_path,
                                               "network-config-test-8.json")
            sp = SnuddaPrune(network_path=self.network_path,
                             config_file=testing_config_file,
                             verbose=True,
                             keep_files=True)  # Use default config file
            sp.prune()

            # Load the pruned data and check it
            sl = SnuddaLoad(pruned_output)
            # With mu2 having 4 synapses means 50% chance to keep them, having 1 will be likely to have it removed
            self.assertTrue(
                64 * 0.5 - 10 < sl.data["nGapJunctions"] < 64 * 0.5 + 10)

        with self.subTest("gap-junction-a3"):
            # Test of a3
            testing_config_file = os.path.join(self.network_path,
                                               "network-config-test-9.json")
            sp = SnuddaPrune(network_path=self.network_path,
                             config_file=testing_config_file,
                             verbose=True,
                             keep_files=True)  # Use default config file
            sp.prune()

            # Load the pruned data and check it
            sl = SnuddaLoad(pruned_output, verbose=True)

            # a3=0.7 means 30% chance to remove all synapses between a pair
            self.assertTrue(
                64 * 0.7 - 10 < sl.data["nGapJunctions"] < 64 * 0.7 + 10)

        if False:  # Distance dependent pruning currently not implemented for gap junctions
            with self.subTest("gap-junction-distance-dependent-pruning"):
                # Testing distance dependent pruning
                testing_config_file = os.path.join(
                    self.network_path, "network-config-test-10.json")
                sp = SnuddaPrune(network_path=self.network_path,
                                 config_file=testing_config_file,
                                 verbose=True,
                                 keep_files=True)  # Use default config file
                sp.prune()

                # Load the pruned data and check it
                sl = SnuddaLoad(pruned_output, verbose=True)

                # "1*(d <= 120e-6)" means we remove all synapses further away than 100 micrometers
                self.assertEqual(sl.data["nGapJunctions"], 2 * 4 * 4)
                self.assertTrue(
                    (sl.data["gapJunctions"][:, 8] <=
                     120).all())  # Column 8 -- distance to soma in micrometers