Esempio n. 1
0
 def worldPosJacobian_localPos(robot,link,localPos):
     if not isinstance(link,RobotModelLink):
         link = robot.link(link)
         assert link.index >= 0
     return so3.matrix(link.getTransform()[0])
Esempio n. 2
0
 def __init__(self):
     Context.__init__(self)
     self.type = Type('V',9)
     Rvar = Variable("R",self.type)
     Rsymb = VariableExpression(Rvar)
     R1 = Variable("R1",self.type)
     R2 = Variable("R2",self.type)
     V3type = Type('V',3)
     q = Variable('q',Type('V',4))
     pointvar = Variable("point",V3type)
     pointsymb = VariableExpression(pointvar)
     self.identity = self.declare(expr(so3.identity()),"identity",[])
     self.identity.description = "The identity rotation"
     self.matrix = self.declare(expr(so3.matrix(Rsymb)),"matrix",["R"])
     self.matrix.addSimplifier(['so3.identity'],(lambda R:eye(3)),pre=True)
     self.matrix.description = "Converts to a 3x3 matrix"
     M = Variable("M",Type('M',(3,3)))
     self.from_matrix = self.declare(flatten(transpose(M)),"from_matrix",['M'])
     self.from_matrix.description = "Converts from a 3x3 matrix"
     self.from_matrix.autoSetJacobians()
     self.inv = self.declare(expr(so3.inv(Rsymb)),"inv",["R"])
     self.inv.description = "Inverts a rotation"
     self.inv.autoSetJacobians()
     self.inv.properties['inverse'] = weakref.proxy(self.inv)
     self.inv.addSimplifier(['so3.identity'],lambda R:R)
     self.mul = self.declare(so3.mul,"mul")
     self.mul.description = "Inverts a rotation"
     self.mul.setDeriv(0,lambda R1,R2,dR1:self.mul(dR1,R2),asExpr=True)
     self.mul.setDeriv(1,lambda R1,R2,dR2:self.mul(R1,dR2),asExpr=True)
     self.mul.addSimplifier(['so3.identity',None],(lambda R1,R2:R2),pre=True)
     self.mul.addSimplifier([None,'so3.identity'],(lambda R1,R2:R1),pre=True)
     self.mul.properties['associative'] = True
     self.apply = self.declare(expr(so3.apply(Rsymb,pointsymb)),"apply",["R","point"])
     self.apply.addSimplifier(['so3.identity',None],(lambda R,point:point),pre=True)
     self.apply.addSimplifier([None,'zero'],(lambda R,point:point),pre=True)
     self.apply.autoSetJacobians()
     self.rotation = self.declare(so3.rotation,"rotation")
     self.from_rpy = self.declare(so3.from_rpy,"from_rpy")
     self.rpy = self.declare(so3.rpy,"rpy")
     self.from_quaternion = self.declare(expr(so3.from_quaternion([q[0],q[1],q[2],q[3]])),"from_quaternion",["q"])
     self.quaternion = self.declare(so3.quaternion,"quaternion")
     self.from_rotation_vector = self.declare(so3.from_rotation_vector,"from_rotation_vector")
     self.rotation_vector = self.declare(so3.rotation_vector,"rotation_vector")
     self.axis = self.declare(unit(self.rotation_vector(Rvar)),"rotation",["R"])
     self.angle = self.declare(so3.angle,"angle")
     self.error = self.declare(so3.error,"error")
     self.distance = self.declare(self.angle(self.mul(self.inv(R1),R2)),"distance",['R1','R2'])
     self.distance.properties['nonnegative'] = True
     Rm = self.matrix(Rsymb)
     self.eq_constraint = self.declare(dot(Rm.T,Rm),'eq_constraint',['R'])
     self.quaternion_constraint = self.declare(norm2(q)-1,'quaternion_constraint',['q'])
     self.identity.returnType = self.type
     self.inv.returnType = self.type
     self.inv.argTypes = [self.type]
     self.mul.returnType = self.type
     self.mul.argTypes = [self.type,self.type]
     self.apply.returnType = V3type
     self.apply.argTypes = [self.type,V3type]
     self.rotation.returnType = self.type
     self.rotation.argTypes = [V3type,Numeric]
     self.rotation.setDeriv(1,lambda axis,angle:so3.cross_product(axis))
     self.axis.returnType = V3type
     self.axis.argTypes = [self.type]
     self.angle.returnType = V3type
     self.angle.argTypes = [self.type]
     def angle_deriv(R,dR):
         cosangle = (R[0]+R[4]+R[8]-1)*0.5
         angle = arccos(cosangle)
         #dangle / dR[0] = -1.0/sqrt(1-cosangle**2) * dcosangle/dR[0]
         dacos = -1.0/sqrt(1-cosangle**2)
         return expr([0.5*dacos*dR[0],0,0,0,0.5*dacos*dR[4],0,0,0,0.5*dacos*dR[8]])
     self.angle.setDeriv(0,angle_deriv,asExpr=True)
     self.error.returnType = V3type
     self.error.argTypes = [self.type,self.type]
     self.distance.returnType = Numeric
     self.distance.argTypes = [self.type,self.type]
     self.distance.autoSetJacobians()
     self.from_matrix.returnType = self.type
     self.from_matrix.argTypes = [M.type]
     self.from_rpy.returnType = self.type
     self.from_rpy.argTypes = [V3type]
     self.from_quaternion.returnType = self.type
     self.from_quaternion.argTypes = [Type('V',4)]
     self.from_rotation_vector.returnType = self.type
     self.from_rotation_vector.argTypes = [V3type]
     self.matrix.returnType = self.from_matrix.argTypes[0]
     self.matrix.argTypes = [self.from_matrix.returnType]
     self.rpy.returnType = self.from_rpy.argTypes[0]
     self.rpy.argTypes = [self.from_rpy.returnType]
     self.quaternion.returnType = self.from_quaternion.argTypes[0]
     self.quaternion.argTypes = [self.from_quaternion.returnType]
     self.rotation_vector.returnType = self.from_rotation_vector.argTypes[0]
     self.rotation_vector.argTypes = [self.from_rotation_vector.returnType]
Esempio n. 3
0
 def worldPosJacobian_localPos(robot, link, localPos):
     if not isinstance(link, RobotModelLink):
         link = robot.link(link)
         assert link.index >= 0
     return so3.matrix(link.getTransform()[0])
Esempio n. 4
0
    def __init__(self):
        Context.__init__(self)
        self.type = Type('V', 9)
        Rvar = Variable("R", self.type)
        Rsymb = VariableExpression(Rvar)
        R1 = Variable("R1", self.type)
        R2 = Variable("R2", self.type)
        V3type = Type('V', 3)
        q = Variable('q', Type('V', 4))
        pointvar = Variable("point", V3type)
        pointsymb = VariableExpression(pointvar)
        self.identity = self.declare(expr(so3.identity()), "identity", [])
        self.identity.description = "The identity rotation"
        self.matrix = self.declare(expr(so3.matrix(Rsymb)), "matrix", ["R"])
        self.matrix.addSimplifier(['so3.identity'], (lambda R: eye(3)),
                                  pre=True)
        self.matrix.description = "Converts to a 3x3 matrix"
        M = Variable("M", Type('M', (3, 3)))
        self.from_matrix = self.declare(flatten(transpose(M)), "from_matrix",
                                        ['M'])
        self.from_matrix.description = "Converts from a 3x3 matrix"
        self.from_matrix.autoSetJacobians()
        self.inv = self.declare(expr(so3.inv(Rsymb)), "inv", ["R"])
        self.inv.description = "Inverts a rotation"
        self.inv.autoSetJacobians()
        self.inv.properties['inverse'] = weakref.proxy(self.inv)
        self.inv.addSimplifier(['so3.identity'], lambda R: R)
        self.mul = self.declare(so3.mul, "mul")
        self.mul.description = "Inverts a rotation"
        self.mul.setDeriv(0,
                          lambda R1, R2, dR1: self.mul(dR1, R2),
                          asExpr=True)
        self.mul.setDeriv(1,
                          lambda R1, R2, dR2: self.mul(R1, dR2),
                          asExpr=True)
        self.mul.addSimplifier(['so3.identity', None], (lambda R1, R2: R2),
                               pre=True)
        self.mul.addSimplifier([None, 'so3.identity'], (lambda R1, R2: R1),
                               pre=True)
        self.mul.properties['associative'] = True
        self.apply = self.declare(expr(so3.apply(Rsymb, pointsymb)), "apply",
                                  ["R", "point"])
        self.apply.addSimplifier(['so3.identity', None],
                                 (lambda R, point: point),
                                 pre=True)
        self.apply.addSimplifier([None, 'zero'], (lambda R, point: point),
                                 pre=True)
        self.apply.autoSetJacobians()
        self.rotation = self.declare(so3.rotation, "rotation")
        self.from_rpy = self.declare(so3.from_rpy, "from_rpy")
        self.rpy = self.declare(so3.rpy, "rpy")
        self.from_quaternion = self.declare(
            expr(so3.from_quaternion([q[0], q[1], q[2], q[3]])),
            "from_quaternion", ["q"])
        self.quaternion = self.declare(so3.quaternion, "quaternion")
        self.from_rotation_vector = self.declare(so3.from_rotation_vector,
                                                 "from_rotation_vector")
        self.rotation_vector = self.declare(so3.rotation_vector,
                                            "rotation_vector")
        self.axis = self.declare(unit(self.rotation_vector(Rvar)), "rotation",
                                 ["R"])
        self.angle = self.declare(so3.angle, "angle")
        self.error = self.declare(so3.error, "error")
        self.distance = self.declare(self.angle(self.mul(self.inv(R1), R2)),
                                     "distance", ['R1', 'R2'])
        self.distance.properties['nonnegative'] = True
        Rm = self.matrix(Rsymb)
        self.eq_constraint = self.declare(dot(Rm.T, Rm), 'eq_constraint',
                                          ['R'])
        self.quaternion_constraint = self.declare(
            norm2(q) - 1, 'quaternion_constraint', ['q'])
        self.identity.returnType = self.type
        self.inv.returnType = self.type
        self.inv.argTypes = [self.type]
        self.mul.returnType = self.type
        self.mul.argTypes = [self.type, self.type]
        self.apply.returnType = V3type
        self.apply.argTypes = [self.type, V3type]
        self.rotation.returnType = self.type
        self.rotation.argTypes = [V3type, Numeric]
        self.rotation.setDeriv(1, lambda axis, angle: so3.cross_product(axis))
        self.axis.returnType = V3type
        self.axis.argTypes = [self.type]
        self.angle.returnType = V3type
        self.angle.argTypes = [self.type]

        def angle_deriv(R, dR):
            cosangle = (R[0] + R[4] + R[8] - 1) * 0.5
            angle = arccos(cosangle)
            #dangle / dR[0] = -1.0/sqrt(1-cosangle**2) * dcosangle/dR[0]
            dacos = -1.0 / sqrt(1 - cosangle**2)
            return expr([
                0.5 * dacos * dR[0], 0, 0, 0, 0.5 * dacos * dR[4], 0, 0, 0,
                0.5 * dacos * dR[8]
            ])

        self.angle.setDeriv(0, angle_deriv, asExpr=True)
        self.error.returnType = V3type
        self.error.argTypes = [self.type, self.type]
        self.distance.returnType = Numeric
        self.distance.argTypes = [self.type, self.type]
        self.distance.autoSetJacobians()
        self.from_matrix.returnType = self.type
        self.from_matrix.argTypes = [M.type]
        self.from_rpy.returnType = self.type
        self.from_rpy.argTypes = [V3type]
        self.from_quaternion.returnType = self.type
        self.from_quaternion.argTypes = [Type('V', 4)]
        self.from_rotation_vector.returnType = self.type
        self.from_rotation_vector.argTypes = [V3type]
        self.matrix.returnType = self.from_matrix.argTypes[0]
        self.matrix.argTypes = [self.from_matrix.returnType]
        self.rpy.returnType = self.from_rpy.argTypes[0]
        self.rpy.argTypes = [self.from_rpy.returnType]
        self.quaternion.returnType = self.from_quaternion.argTypes[0]
        self.quaternion.argTypes = [self.from_quaternion.returnType]
        self.rotation_vector.returnType = self.from_rotation_vector.argTypes[0]
        self.rotation_vector.argTypes = [self.from_rotation_vector.returnType]
Esempio n. 5
0
def writeSo3(x):
    """Writes an so3 element, i.e., rotation matrix, to string in the same
    format as written to by Klampt C++ bindings (row major)."""
    assert len(x)==9,"Argument must be an so3 element"
    return '\t'.join([' '.join([str(mij) for mij in mi ]) for mi in so3.matrix(x)])
Esempio n. 6
0
def readMatrix3(text):
    """Reads a 3x3 matrix from a string"""
    return so3.matrix(readSo3(text))
Esempio n. 7
0
def rotation(T):
    """Returns the 3x3 rotation matrix corresponding to T's rotation"""
    (R, t) = T
    return so3.matrix(R)
Esempio n. 8
0
def rotation(T):
    """Returns the 3x3 rotation matrix corresponding to T's rotation"""
    (R,t) = T
    return so3.matrix(R)
Esempio n. 9
0
def euler_from_expmap(axis_angle_parameters, axes="sxyz"):
    axis_angle = (axis_angle_parameters[0:3], axis_angle_parameters[3])
    R = so3.from_axis_angle(axis_angle)
    matrix = so3.matrix(R)
    x, y, z = transformations.euler_from_matrix(matrix, axes)
    return x, y, z