def cache_file_to_be_served(tmp, checkpoint, download_id, format=None, filename=None, expiry=10*60*60): """ tmp can be either either a path to a tempfile or a StringIO (the APIs for tempfiles vs StringIO are unfortunately... not similar) """ if checkpoint: format = Format.from_format(format) try: filename = unidecode(filename) except Exception: pass tmp = Temp(tmp) payload = tmp.payload expose_download(payload, expiry, mimetype=format.mimetype, content_disposition='attachment; filename=%s.%s' % (filename, format.extension), extras={'X-CommCareHQ-Export-Token': checkpoint.get_id}, download_id=download_id) else: # this just gives you a link saying there wasn't anything there expose_download("Sorry, there wasn't any data.", expiry, content_disposition="", mimetype="text/html", download_id=download_id).save(expiry)
def export_ucr_async(report_export, download_id, user): use_transfer = settings.SHARED_DRIVE_CONF.transfer_enabled ascii_title = report_export.title.encode('ascii', 'replace').decode('utf-8') filename = '{}.xlsx'.format(ascii_title.replace('/', '?')) file_path = get_download_file_path(use_transfer, filename) report_export.create_export(file_path, Format.XLS_2007) expose_download(use_transfer, file_path, filename, download_id, 'xlsx') link = reverse("retrieve_download", args=[download_id], params={"get_file": '1'}, absolute=True) send_report_download_email(report_export.title, user.get_email(), link)
def build_form_multimedia_zip( domain, xmlns, startdate, enddate, app_id, export_id, zip_name, download_id, export_is_legacy, user_types=None, group=None): form_ids = get_form_ids_having_multimedia( domain, app_id, xmlns, parse(startdate), parse(enddate), group=group, user_types=user_types, ) properties = _get_export_properties(export_id, export_is_legacy) if not app_id: zip_name = 'Unrelated Form' forms_info = list() for form in FormAccessors(domain).iter_forms(form_ids): if not zip_name: zip_name = unidecode(form.name or 'unknown form') forms_info.append(_extract_form_attachment_info(form, properties)) num_forms = len(forms_info) DownloadBase.set_progress(build_form_multimedia_zip, 0, num_forms) case_id_to_name = _get_case_names( domain, set.union(*[form_info['case_ids'] for form_info in forms_info]) if forms_info else set(), ) use_transfer = settings.SHARED_DRIVE_CONF.transfer_enabled if use_transfer: fpath = _get_download_file_path(xmlns, startdate, enddate, export_id, app_id, num_forms) else: _, fpath = tempfile.mkstemp() _write_attachments_to_file(fpath, use_transfer, num_forms, forms_info, case_id_to_name) filename = "{}.zip".format(zip_name) expose_download(use_transfer, fpath, filename, download_id, 'zip') DownloadBase.set_progress(build_form_multimedia_zip, num_forms, num_forms)
def export_async(custom_export, download_id, format=None, filename=None, **kwargs): try: tmp, checkpoint = custom_export.get_export_files(format=format, process=export_async, **kwargs) except SchemaMismatchException, e: # fire off a delayed force update to prevent this from happening again rebuild_schemas.delay(custom_export.index) expiry = 10*60*60 expose_download( "Sorry, the export failed for %s, please try again later" % custom_export._id, expiry, content_disposition="", mimetype="text/html", download_id=download_id ).save(expiry)
def post(self, request, *args, **kwargs): upload = request.FILES.get('bulk_upload_file') if not upload: messages.error(request, _('no file uploaded')) return self.get(request, *args, **kwargs) if not args: messages.error(request, _('no domain specified')) return self.get(request, *args, **kwargs) domain = args[0] # stash this in soil to make it easier to pass to celery file_ref = expose_download(upload.read(), expiry=1*60*60) task = import_locations_async.delay( domain, file_ref.download_id, ) file_ref.set_task(task) return HttpResponseRedirect( reverse( LocationImportStatusView.urlname, args=[domain, file_ref.download_id] ) )
def post(self, request, *args, **kwargs): upload = request.FILES.get('locs') if not upload: return HttpResponse(_('no file uploaded')) if not args: return HttpResponse(_('no domain specified')) domain = args[0] update_existing = bool(request.POST.get('update')) # stash this in soil to make it easier to pass to celery file_ref = expose_download(upload.read(), expiry=1*60*60) task = import_locations_async.delay( domain, file_ref.download_id, update_existing ) file_ref.set_task(task) return HttpResponseRedirect( reverse( LocationImportStatusView.urlname, args=[domain, file_ref.download_id] ) )
def post(self, request): replace = 'replace' in request.POST file_ref = expose_download(request.file.read(), expiry=1*60*60) # catch basic validation in the synchronous UI try: validate_file_format(file_ref.get_filename()) except FixtureUploadError as e: messages.error(request, unicode(e)) return HttpResponseRedirect(fixtures_home(self.domain)) # hand off to async task = fixture_upload_async.delay( self.domain, file_ref.download_id, replace, ) file_ref.set_task(task) return HttpResponseRedirect( reverse( FixtureUploadStatusView.urlname, args=[self.domain, file_ref.download_id] ) )
def excel_config(request, domain): if request.method == 'POST': if request.FILES: named_columns = request.POST['named_columns'] uses_headers = named_columns == 'yes' uploaded_file_handle = request.FILES['file'] extension = os.path.splitext(uploaded_file_handle.name)[1][1:].strip().lower() if extension in ExcelFile.ALLOWED_EXTENSIONS: # NOTE: this is kinda messy and needs to be cleaned up but # just trying to get something functional in place. # We may not always be able to reference files from subsequent # views if your worker changes, so we have to store it elsewhere # using the soil framework. # stash content in the default storage for subsequent views file_ref = expose_download(uploaded_file_handle.read(), expiry=1*60*60) request.session[EXCEL_SESSION_ID] = file_ref.download_id spreadsheet = _get_spreadsheet(file_ref, uses_headers) if not spreadsheet: return _spreadsheet_expired(request, domain) columns = spreadsheet.get_header_columns() row_count = spreadsheet.get_num_rows() if row_count > MAX_ALLOWED_ROWS: messages.error(request, _('Sorry, your spreadsheet is too big. ' 'Please reduce the number of ' 'rows to less than %s and try again') % MAX_ALLOWED_ROWS) else: # get case types in this domain case_types = [] for row in CommCareCase.view('hqcase/types_by_domain',reduce=True,group=True,startkey=[domain],endkey=[domain,{}]).all(): if not row['key'][1] in case_types: case_types.append(row['key'][1]) if len(case_types) > 0: return render(request, "importer/excel_config.html", { 'named_columns': named_columns, 'columns': columns, 'case_types': case_types, 'domain': domain, 'report': { 'name': 'Import: Configuration' }, 'slug': base.ImportCases.slug}) else: messages.error(request, _('No cases have been submitted to this domain. ' 'You cannot update case details from an Excel ' 'file until you have existing cases.')) else: messages.error(request, _('The Excel file you chose could not be processed. ' 'Please check that it is saved as a Microsoft Excel ' '97/2000 .xls file.')) else: messages.error(request, _('Please choose an Excel file to import.')) #TODO show bad/invalid file error on this page return HttpResponseRedirect(base.ImportCases.get_url(domain=domain))
def _dump_xlsx_and_expose_download(filename, headers, rows, download_id, task, total_count, owner_id): writer = Excel2007ExportWriter(format_as_text=True) use_transfer = settings.SHARED_DRIVE_CONF.transfer_enabled file_path = get_download_file_path(use_transfer, filename) writer.open( header_table=headers, file=file_path, ) writer.write(rows) writer.close() expose_download(use_transfer, file_path, filename, download_id, 'xlsx', owner_ids=[owner_id]) DownloadBase.set_progress(task, total_count, total_count)
def post(self, request, *args, **kwargs): upload = request.FILES.get("bulk_upload_file") """View's dispatch method automatically calls this""" try: self.workbook = WorkbookJSONReader(upload) except InvalidFileException: try: csv.DictReader(io.StringIO(upload.read().decode("ascii"), newline=None)) return HttpResponseBadRequest( "CommCare HQ no longer supports CSV upload. " "Please convert to Excel 2007 or higher (.xlsx) " "and try again." ) except UnicodeDecodeError: return HttpResponseBadRequest("Unrecognized format") except JSONReaderError as e: messages.error(request, "Your upload was unsuccessful. %s" % e.message) return self.get(request, *args, **kwargs) except HeaderValueError as e: return HttpResponseBadRequest("Upload encountered a data type error: %s" % e.message) try: self.user_specs = self.workbook.get_worksheet(title="users") except WorksheetNotFound: try: self.user_specs = self.workbook.get_worksheet() except WorksheetNotFound: return HttpResponseBadRequest("Workbook has no worksheets") try: self.group_specs = self.workbook.get_worksheet(title="groups") except WorksheetNotFound: self.group_specs = [] self.location_specs = [] if Domain.get_by_name(self.domain).commtrack_enabled: try: self.location_specs = self.workbook.get_worksheet(title="locations") except WorksheetNotFound: # if there is no sheet for locations (since this was added # later and is optional) we don't error pass try: check_headers(self.user_specs) except UserUploadError as e: return HttpResponseBadRequest(e) task_ref = expose_download(None, expiry=1 * 60 * 60) task = bulk_upload_async.delay( self.domain, list(self.user_specs), list(self.group_specs), list(self.location_specs) ) task_ref.set_task(task) return HttpResponseRedirect(reverse(UserUploadStatusView.urlname, args=[self.domain, task_ref.download_id]))
def export_ucr_async(report_export, download_id, user): use_transfer = settings.SHARED_DRIVE_CONF.transfer_enabled ascii_title = report_export.title.encode('ascii', 'replace').decode('utf-8') filename = '{}.xlsx'.format(ascii_title.replace('/', '?')) file_path = get_download_file_path(use_transfer, filename) report_export.create_export(file_path, Format.XLS_2007) expose_download(use_transfer, file_path, filename, download_id, 'xlsx', owner_ids=[user.get_id]) link = reverse("retrieve_download", args=[download_id], params={"get_file": '1'}, absolute=True) send_report_download_email(report_export.title, user.get_email(), link)
def import_locations_async(download_id, domain, file_ref_id, update_existing=False): """ Asynchronously import locations. download_id is for showing the results to the user through soil. file_ref_id is also a download_id, but should be a pointer to the import file. """ download_ref = DownloadBase.get(file_ref_id) with open(download_ref.get_filename(), 'rb') as f: results_msg = '\n'.join(import_locations(domain, f, update_existing)) ref = expose_download(results_msg, 60*60*3) cache.set(download_id, ref)
def export_async(custom_export, download_id, format=None, filename=None, **kwargs): try: tmp, checkpoint = custom_export.get_export_files(format=format, process=export_async, **kwargs) except SchemaMismatchException, e: # fire off a delayed force update to prevent this from happening again rebuild_schemas.delay(custom_export.index) expiry = 10 * 60 * 60 expose_download( "Sorry, the export failed for %s, please try again later" % custom_export._id, expiry, content_disposition="", mimetype="text/html", download_id=download_id).save(expiry)
def historical_import(request, domain): if request.method == "POST": file_ref = expose_download(request.FILES['history'].read(), expiry=1*60*60) download_id = uuid.uuid4().hex import_stock_reports_async.delay(download_id, domain, file_ref.download_id) return _async_in_progress(request, domain, download_id) return HttpResponse(""" <form method="post" action="" enctype="multipart/form-data"> <div><input type="file" name="history" /></div> <div><button type="submit">Import historical stock reports</button></div> </form> """)
def cache_file_to_be_served(tmp, checkpoint, download_id, format=None, filename=None, expiry=10 * 60 * 60): """ tmp can be either either a path to a tempfile or a StringIO (the APIs for tempfiles vs StringIO are unfortunately... not similar) """ if checkpoint: format = Format.from_format(format) try: filename = unidecode(filename) except Exception: pass escaped_filename = escape_quotes('%s.%s' % (filename, format.extension)) payload = tmp.payload expose_download( payload, expiry, mimetype=format.mimetype, content_disposition='attachment; filename="%s"' % escaped_filename, extras={'X-CommCareHQ-Export-Token': checkpoint.get_id}, download_id=download_id) else: # this just gives you a link saying there wasn't anything there expose_download("Sorry, there wasn't any data.", expiry, content_disposition="", mimetype="text/html", download_id=download_id).save(expiry)
def process_upload(self): # save the file w/ soil self.uploaded_file.file.seek(0) saved_file = expose_download(self.uploaded_file.file.read(), expiry=BulkMultimediaStatusCache.cache_expiry) processing_id = saved_file.download_id status = BulkMultimediaStatusCache(processing_id) status.save() process_bulk_upload_zip.delay(processing_id, self.domain, self.app_id, username=self.request.couch_user.username if self.request.couch_user else None, share_media=self.share_media, license_name=self.license_used, author=self.author, attribution_notes=self.attribution_notes, replace_existing=self.replace_existing) return status.get_response()
def process_upload(self): # save the file w/ soil self.uploaded_file.file.seek(0) saved_file = expose_download(self.uploaded_file.file.read(), expiry=BulkMultimediaStatusCache.cache_expiry) processing_id = saved_file.download_id status = BulkMultimediaStatusCache(processing_id) status.save() process_bulk_upload_zip.delay(processing_id, self.domain, self.app_id, username=self.username, share_media=self.share_media, license_name=self.license_used, author=self.author, attribution_notes=self.attribution_notes, replace_existing=self.replace_existing) return status.get_response()
def location_import(request, domain): if request.method == "POST": upload = request.FILES.get('locs') if not upload: return HttpResponse('no file uploaded') # stash this in soil to make it easier to pass to celery file_ref = expose_download(upload.read(), expiry=1*60*60) download_id = uuid.uuid4().hex import_locations_async.delay(download_id, domain, file_ref.download_id) return _async_in_progress(request, domain, download_id) return HttpResponse(""" <form method="post" action="" enctype="multipart/form-data"> <div><input type="file" name="locs" /></div> <div><button type="submit">Import locations</button></div> </form> """)
def post(self, request, *args, **kwargs): upload = request.FILES.get('bulk_upload_file') if not upload: messages.error(request, _('no file uploaded')) return self.get(request, *args, **kwargs) elif not upload.name.endswith('.csv'): messages.error(request, _('please use csv format only')) return self.get(request, *args, **kwargs) domain = args[0] # stash this in soil to make it easier to pass to celery file_ref = expose_download(upload.read(), expiry=1 * 60 * 60) task = import_products_async.delay( domain, file_ref.download_id, ) file_ref.set_task(task) return HttpResponseRedirect( reverse(ProductImportStatusView.urlname, args=[domain, file_ref.download_id]))
def location_import(request, domain): if request.method == "POST": upload = request.FILES.get('locs') if not upload: return HttpResponse('no file uploaded') update_existing = bool(request.POST.get('update')) # stash this in soil to make it easier to pass to celery file_ref = expose_download(upload.read(), expiry=1 * 60 * 60) download_id = uuid.uuid4().hex import_locations_async.delay(download_id, domain, file_ref.download_id, update_existing) return _async_in_progress(request, domain, download_id) return HttpResponse(""" <form method="post" action="" enctype="multipart/form-data"> <div><input type="file" name="locs" /></div> <div><input id="update" type="checkbox" name="update" /> <label for="update">Update existing?</label></div> <div><button type="submit">Import locations</button></div> </form> """)
def prepare_fixture_download(table_ids, domain, task, download_id): """Prepare fixture data for Excel download """ data_types_book, excel_sheets = _prepare_fixture(table_ids, domain, task=task) header_groups = [("types", excel_sheets["types"]["headers"])] value_groups = [("types", excel_sheets["types"]["rows"])] for data_type in data_types_book: header_groups.append((data_type.tag, excel_sheets[data_type.tag]["headers"])) value_groups.append((data_type.tag, excel_sheets[data_type.tag]["rows"])) file = StringIO() format = Format.XLS_2007 export_raw(tuple(header_groups), tuple(value_groups), file, format) return expose_download( file.getvalue(), 60 * 60 * 2, mimetype=Format.from_format(format).mimetype, content_disposition='attachment; filename="%s_fixtures.xlsx"' % domain, download_id=download_id, )
def post(self, request, *args, **kwargs): upload = request.FILES.get('bulk_upload_file') if not upload: messages.error(request, _('no file uploaded')) return self.get(request, *args, **kwargs) if not args: messages.error(request, _('no domain specified')) return self.get(request, *args, **kwargs) domain = args[0] # stash this in soil to make it easier to pass to celery file_ref = expose_download(upload.read(), expiry=1 * 60 * 60) task = import_locations_async.delay( domain, file_ref.download_id, ) file_ref.set_task(task) return HttpResponseRedirect( reverse(LocationImportStatusView.urlname, args=[domain, file_ref.download_id]))
def post(self, request): replace = 'replace' in request.POST file_ref = expose_download(request.file.read(), expiry=1 * 60 * 60) # catch basic validation in the synchronous UI try: validate_file_format(file_ref.get_filename()) except FixtureUploadError as e: messages.error(request, unicode(e)) return HttpResponseRedirect(fixtures_home(self.domain)) # hand off to async task = fixture_upload_async.delay( self.domain, file_ref.download_id, replace, ) file_ref.set_task(task) return HttpResponseRedirect( reverse(FixtureUploadStatusView.urlname, args=[self.domain, file_ref.download_id]))
def post(self, request, *args, **kwargs): upload = request.FILES.get('bulk_upload_file') if not upload: messages.error(request, _('no file uploaded')) return self.get(request, *args, **kwargs) elif not upload.name.endswith('.xlsx'): messages.error(request, _('please use xlsx format only')) return self.get(request, *args, **kwargs) domain = args[0] # stash this in soil to make it easier to pass to celery file_ref = expose_download(upload.read(), expiry=1*60*60) task = import_products_async.delay( domain, file_ref.download_id, ) file_ref.set_task(task) return HttpResponseRedirect( reverse( ProductImportStatusView.urlname, args=[domain, file_ref.download_id] ) )
def download_item_lists(request, domain, html_response=False): """ Is used to serve excel_download and html_view for view_lookup_tables """ table_ids = request.GET.getlist("table_id") if table_ids and table_ids[0]: try: data_types_view = [FixtureDataType.get(id) for id in request.GET.getlist("table_id")] except ResourceNotFound as Ex: if html_response: messages.info(request, _("Sorry, we couldn't find that table. If you think this is a mistake please report an issue.")) raise data_types_view = FixtureDataType.by_domain(domain) else: data_types_view = FixtureDataType.by_domain(domain) if html_response: data_types_view = list(data_types_view)[0:1] # book-keeping data from view_results for repeated use data_types_book = [] data_items_book_by_type = {} item_helpers_by_type = {} """ Contains all excel sheets in following format excel_sheets = { "types": { "headers": [], "rows": [(row), (row), (row)] } "next-sheet": { "headers": [], "rows": [(row), (row), (row)] }, ... } """ excel_sheets = {} def empty_padding_list(length): return ["" for x in range(0, length)] max_fields = 0 """ - Helper to generate headers like "field 2: property 1" - Captures max_num_of_properties for any field of any type at the list-index. Example values: [0, 1] -> "field 2: property 1" (first-field has zero-props, second has 1 property) [1, 1] -> "field 1: property 1" (first-field has 1 property, second has 1 property) [0, 2] -> "field 2: property 1", "field 2: property 2" """ field_prop_count = [] """ captures all possible 'field-property' values for each data-type Example value {u'clinics': {'field 2 : property 1': u'lang'}, u'growth_chart': {'field 2 : property 2': u'maxWeight'}} """ type_field_properties = {} get_field_prop_format = lambda x, y: "field " + str(x) + " : property " + str(y) for data_type in data_types_view: # Helpers to generate 'types' sheet type_field_properties[data_type.tag] = {} data_types_book.append(data_type) if len(data_type.fields) > max_fields: max_fields = len(data_type.fields) for index, field in enumerate(data_type.fields): if len(field_prop_count) <= index: field_prop_count.append(len(field.properties)) elif field_prop_count[index] <= len(field.properties): field_prop_count[index] = len(field.properties) if len(field.properties) > 0: for prop_index, property in enumerate(field.properties): prop_key = get_field_prop_format(index + 1, prop_index + 1) type_field_properties[data_type.tag][prop_key] = property # Helpers to generate item-sheets data_items_book_by_type[data_type.tag] = [] max_users = 0 max_groups = 0 max_field_prop_combos = {field_name: 0 for field_name in data_type.fields_without_attributes} for item_row in FixtureDataItem.by_data_type(domain, data_type.get_id): data_items_book_by_type[data_type.tag].append(item_row) group_len = len(item_row.groups) max_groups = group_len if group_len > max_groups else max_groups user_len = len(item_row.users) max_users = user_len if user_len > max_users else max_users for field_key in item_row.fields: if field_key in max_field_prop_combos: max_combos = max_field_prop_combos[field_key] cur_combo_len = len(item_row.fields[field_key].field_list) max_combos = cur_combo_len if cur_combo_len > max_combos else max_combos max_field_prop_combos[field_key] = max_combos item_helpers = { "max_users": max_users, "max_groups": max_groups, "max_field_prop_combos": max_field_prop_combos, } item_helpers_by_type[data_type.tag] = item_helpers # Prepare 'types' sheet data types_sheet = {"headers": [], "rows": []} types_sheet["headers"] = [DELETE_HEADER, "table_id", 'is_global?'] types_sheet["headers"].extend(["field %d" % x for x in range(1, max_fields + 1)]) field_prop_headers = [] for field_num, prop_num in enumerate(field_prop_count): if prop_num > 0: for c in range(0, prop_num): prop_key = get_field_prop_format(field_num + 1, c + 1) field_prop_headers.append(prop_key) types_sheet["headers"].append(prop_key) for data_type in data_types_book: common_vals = ["N", data_type.tag, yesno(data_type.is_global)] field_vals = [field.field_name for field in data_type.fields] + empty_padding_list(max_fields - len(data_type.fields)) prop_vals = [] if type_field_properties.has_key(data_type.tag): props = type_field_properties.get(data_type.tag) prop_vals.extend([props.get(key, "") for key in field_prop_headers]) row = tuple(common_vals[2 if html_response else 0:] + field_vals + prop_vals) types_sheet["rows"].append(row) types_sheet["rows"] = tuple(types_sheet["rows"]) types_sheet["headers"] = tuple(types_sheet["headers"]) excel_sheets["types"] = types_sheet # Prepare 'items' sheet data for each data-type for data_type in data_types_book: item_sheet = {"headers": [], "rows": []} item_helpers = item_helpers_by_type[data_type.tag] max_users = item_helpers["max_users"] max_groups = item_helpers["max_groups"] max_field_prop_combos = item_helpers["max_field_prop_combos"] common_headers = ["UID", DELETE_HEADER] user_headers = ["user %d" % x for x in range(1, max_users + 1)] group_headers = ["group %d" % x for x in range(1, max_groups + 1)] field_headers = [] for field in data_type.fields: if len(field.properties) == 0: field_headers.append("field: " + field.field_name) else: prop_headers = [] for x in range(1, max_field_prop_combos[field.field_name] + 1): for property in field.properties: prop_headers.append("%(name)s: %(prop)s %(count)s" % { "name": field.field_name, "prop": property, "count": x }) prop_headers.append("field: %(name)s %(count)s" % { "name": field.field_name, "count": x }) field_headers.extend(prop_headers) item_sheet["headers"] = tuple( common_headers[2 if html_response else 0:] + field_headers + user_headers + group_headers ) excel_sheets[data_type.tag] = item_sheet for item_row in data_items_book_by_type[data_type.tag]: common_vals = [str(_id_from_doc(item_row)), "N"] user_vals = [user.raw_username for user in item_row.users] + empty_padding_list(max_users - len(item_row.users)) group_vals = [group.name for group in item_row.groups] + empty_padding_list(max_groups - len(item_row.groups)) field_vals = [] for field in data_type.fields: if len(field.properties) == 0: if any(item_row.fields.get(field.field_name).field_list): value = item_row.fields.get(field.field_name).field_list[0].field_value else: value = "" field_vals.append(value) else: field_prop_vals = [] cur_combo_count = len(item_row.fields.get(field.field_name).field_list) cur_prop_count = len(field.properties) for count, field_prop_combo in enumerate(item_row.fields.get(field.field_name).field_list): for property in field.properties: field_prop_vals.append(field_prop_combo.properties.get(property, None) or "") field_prop_vals.append(field_prop_combo.field_value) padding_list_len = (max_field_prop_combos[field.field_name] - cur_combo_count) * (cur_prop_count + 1) field_prop_vals.extend(empty_padding_list(padding_list_len)) # import pdb; pdb.set_trace(); field_vals.extend(field_prop_vals) row = tuple( common_vals[2 if html_response else 0:] + field_vals + user_vals + group_vals ) item_sheet["rows"].append(row) item_sheet["rows"] = tuple(item_sheet["rows"]) excel_sheets[data_type.tag] = item_sheet if html_response: return excel_sheets header_groups = [("types", excel_sheets["types"]["headers"])] value_groups = [("types", excel_sheets["types"]["rows"])] for data_type in data_types_book: header_groups.append((data_type.tag, excel_sheets[data_type.tag]["headers"])) value_groups.append((data_type.tag, excel_sheets[data_type.tag]["rows"])) fd, path = tempfile.mkstemp() with os.fdopen(fd, 'w') as temp: export_raw(tuple(header_groups), tuple(value_groups), temp) format = Format.XLS_2007 fl = open(path, 'r') fileref = expose_download( fl.read(), 60 * 10, mimetype=Format.from_format(format).mimetype, content_disposition='attachment; filename="%s_fixtures.xlsx"' % domain, ) return json_response({"download_id": fileref.download_id})
def post(self, request, *args, **kwargs): upload = request.FILES.get('bulk_upload_file') """View's dispatch method automatically calls this""" try: self.workbook = WorkbookJSONReader(upload) except InvalidFileException: try: csv.DictReader(io.StringIO(upload.read().decode('ascii'), newline=None)) return HttpResponseBadRequest( "CommCare HQ no longer supports CSV upload. " "Please convert to Excel 2007 or higher (.xlsx) " "and try again." ) except UnicodeDecodeError: return HttpResponseBadRequest("Unrecognized format") except JSONReaderError as e: messages.error(request, 'Your upload was unsuccessful. %s' % e.message) return self.get(request, *args, **kwargs) except HeaderValueError as e: return HttpResponseBadRequest("Upload encountered a data type error: %s" % e.message) try: self.user_specs = self.workbook.get_worksheet(title='users') except WorksheetNotFound: try: self.user_specs = self.workbook.get_worksheet() except WorksheetNotFound: return HttpResponseBadRequest("Workbook has no worksheets") try: self.group_specs = self.workbook.get_worksheet(title='groups') except WorksheetNotFound: self.group_specs = [] self.location_specs = [] if Domain.get_by_name(self.domain).commtrack_enabled: try: self.location_specs = self.workbook.get_worksheet(title='locations') except WorksheetNotFound: # if there is no sheet for locations (since this was added # later and is optional) we don't error pass try: check_headers(self.user_specs) except UserUploadError as e: return HttpResponseBadRequest(e) task_ref = expose_download(None, expiry=1*60*60) task = bulk_upload_async.delay( self.domain, list(self.user_specs), list(self.group_specs), list(self.location_specs) ) task_ref.set_task(task) return HttpResponseRedirect( reverse( UserUploadStatusView.urlname, args=[self.domain, task_ref.download_id] ) )
def dump_users_and_groups(domain, download_id, user_filters, task): from corehq.apps.users.views.mobile.custom_data_fields import UserFieldsView def _load_memoizer(domain): group_memoizer = GroupMemoizer(domain=domain) # load groups manually instead of calling group_memoizer.load_all() # so that we can detect blank groups blank_groups = set() for group in Group.by_domain(domain): if group.name: group_memoizer.add_group(group) else: blank_groups.add(group) if blank_groups: raise GroupNameError(blank_groups=blank_groups) return group_memoizer writer = Excel2007ExportWriter(format_as_text=True) group_memoizer = _load_memoizer(domain) location_cache = LocationIdToSiteCodeCache(domain) users_groups_count = count_users_and_groups(domain, user_filters, group_memoizer) DownloadBase.set_progress(task, 0, users_groups_count) user_data_model = CustomDataFieldsDefinition.get_or_create( domain, UserFieldsView.field_type) user_headers, user_rows = parse_users( group_memoizer, domain, user_data_model, location_cache, user_filters, task, users_groups_count, ) group_headers, group_rows = parse_groups(group_memoizer.groups) headers = [ ('users', [user_headers]), ('groups', [group_headers]), ] rows = [ ('users', user_rows), ('groups', group_rows), ] use_transfer = settings.SHARED_DRIVE_CONF.transfer_enabled filename = "{}_users_{}.xlsx".format(domain, uuid.uuid4().hex) file_path = get_download_file_path(use_transfer, filename) writer.open( header_table=headers, file=file_path, ) writer.write(rows) writer.close() expose_download(use_transfer, file_path, filename, download_id, 'xlsx') DownloadBase.set_progress(task, users_groups_count, users_groups_count)
def download_item_lists(request, domain, html_response=False): """ Is used to serve excel_download and html_view for view_lookup_tables """ table_ids = request.GET.getlist("table_id") if table_ids and table_ids[0]: try: data_types_view = [ FixtureDataType.get(id) for id in request.GET.getlist("table_id") ] except ResourceNotFound as Ex: if html_response: messages.info( request, _("Sorry, we couldn't find that table. If you think this is a mistake please report an issue." )) raise data_types_view = FixtureDataType.by_domain(domain) else: data_types_view = FixtureDataType.by_domain(domain) if html_response: data_types_view = list(data_types_view)[0:1] # book-keeping data from view_results for repeated use data_types_book = [] data_items_book_by_type = {} item_helpers_by_type = {} """ Contains all excel sheets in following format excel_sheets = { "types": { "headers": [], "rows": [(row), (row), (row)] } "next-sheet": { "headers": [], "rows": [(row), (row), (row)] }, ... } """ excel_sheets = {} def empty_padding_list(length): return ["" for x in range(0, length)] max_fields = 0 max_item_attributes = 0 """ - Helper to generate headers like "field 2: property 1" - Captures max_num_of_properties for any field of any type at the list-index. Example values: [0, 1] -> "field 2: property 1" (first-field has zero-props, second has 1 property) [1, 1] -> "field 1: property 1" (first-field has 1 property, second has 1 property) [0, 2] -> "field 2: property 1", "field 2: property 2" """ field_prop_count = [] """ captures all possible 'field-property' values for each data-type Example value {u'clinics': {'field 2 : property 1': u'lang'}, u'growth_chart': {'field 2 : property 2': u'maxWeight'}} """ type_field_properties = {} get_field_prop_format = lambda x, y: "field " + str( x) + " : property " + str(y) for data_type in data_types_view: # Helpers to generate 'types' sheet type_field_properties[data_type.tag] = {} data_types_book.append(data_type) if len(data_type.fields) > max_fields: max_fields = len(data_type.fields) if len(data_type.item_attributes) > max_item_attributes: max_item_attributes = len(data_type.item_attributes) for index, field in enumerate(data_type.fields): if len(field_prop_count) <= index: field_prop_count.append(len(field.properties)) elif field_prop_count[index] <= len(field.properties): field_prop_count[index] = len(field.properties) if len(field.properties) > 0: for prop_index, property in enumerate(field.properties): prop_key = get_field_prop_format(index + 1, prop_index + 1) type_field_properties[data_type.tag][prop_key] = property # Helpers to generate item-sheets data_items_book_by_type[data_type.tag] = [] max_users = 0 max_groups = 0 max_field_prop_combos = { field_name: 0 for field_name in data_type.fields_without_attributes } for item_row in FixtureDataItem.by_data_type(domain, data_type.get_id): data_items_book_by_type[data_type.tag].append(item_row) group_len = len(item_row.groups) max_groups = group_len if group_len > max_groups else max_groups user_len = len(item_row.users) max_users = user_len if user_len > max_users else max_users for field_key in item_row.fields: if field_key in max_field_prop_combos: max_combos = max_field_prop_combos[field_key] cur_combo_len = len(item_row.fields[field_key].field_list) max_combos = cur_combo_len if cur_combo_len > max_combos else max_combos max_field_prop_combos[field_key] = max_combos item_helpers = { "max_users": max_users, "max_groups": max_groups, "max_field_prop_combos": max_field_prop_combos, } item_helpers_by_type[data_type.tag] = item_helpers # Prepare 'types' sheet data types_sheet = {"headers": [], "rows": []} types_sheet["headers"] = [DELETE_HEADER, "table_id", 'is_global?'] types_sheet["headers"].extend( ["field %d" % x for x in range(1, max_fields + 1)]) types_sheet["headers"].extend( ["property %d" % x for x in range(1, max_item_attributes + 1)]) field_prop_headers = [] for field_num, prop_num in enumerate(field_prop_count): if prop_num > 0: for c in range(0, prop_num): prop_key = get_field_prop_format(field_num + 1, c + 1) field_prop_headers.append(prop_key) types_sheet["headers"].append(prop_key) for data_type in data_types_book: common_vals = ["N", data_type.tag, yesno(data_type.is_global)] field_vals = [ field.field_name for field in data_type.fields ] + empty_padding_list(max_fields - len(data_type.fields)) item_att_vals = data_type.item_attributes + empty_padding_list( max_item_attributes - len(data_type.item_attributes)) prop_vals = [] if type_field_properties.has_key(data_type.tag): props = type_field_properties.get(data_type.tag) prop_vals.extend( [props.get(key, "") for key in field_prop_headers]) row = tuple(common_vals[2 if html_response else 0:] + field_vals + item_att_vals + prop_vals) types_sheet["rows"].append(row) types_sheet["rows"] = tuple(types_sheet["rows"]) types_sheet["headers"] = tuple(types_sheet["headers"]) excel_sheets["types"] = types_sheet # Prepare 'items' sheet data for each data-type for data_type in data_types_book: item_sheet = {"headers": [], "rows": []} item_helpers = item_helpers_by_type[data_type.tag] max_users = item_helpers["max_users"] max_groups = item_helpers["max_groups"] max_field_prop_combos = item_helpers["max_field_prop_combos"] common_headers = ["UID", DELETE_HEADER] user_headers = ["user %d" % x for x in range(1, max_users + 1)] group_headers = ["group %d" % x for x in range(1, max_groups + 1)] field_headers = [] item_att_headers = [ "property: " + attribute for attribute in data_type.item_attributes ] for field in data_type.fields: if len(field.properties) == 0: field_headers.append("field: " + field.field_name) else: prop_headers = [] for x in range(1, max_field_prop_combos[field.field_name] + 1): for property in field.properties: prop_headers.append("%(name)s: %(prop)s %(count)s" % { "name": field.field_name, "prop": property, "count": x }) prop_headers.append("field: %(name)s %(count)s" % { "name": field.field_name, "count": x }) field_headers.extend(prop_headers) item_sheet["headers"] = tuple( common_headers[2 if html_response else 0:] + field_headers + item_att_headers + user_headers + group_headers) excel_sheets[data_type.tag] = item_sheet for item_row in data_items_book_by_type[data_type.tag]: common_vals = [str(_id_from_doc(item_row)), "N"] user_vals = [ user.raw_username for user in item_row.users ] + empty_padding_list(max_users - len(item_row.users)) group_vals = [ group.name for group in item_row.groups ] + empty_padding_list(max_groups - len(item_row.groups)) field_vals = [] item_att_vals = [ item_row.item_attributes[attribute] for attribute in data_type.item_attributes ] for field in data_type.fields: if len(field.properties) == 0: if any(item_row.fields.get(field.field_name).field_list): value = item_row.fields.get( field.field_name).field_list[0].field_value else: value = "" field_vals.append(value) else: field_prop_vals = [] cur_combo_count = len( item_row.fields.get(field.field_name).field_list) cur_prop_count = len(field.properties) for count, field_prop_combo in enumerate( item_row.fields.get(field.field_name).field_list): for property in field.properties: field_prop_vals.append( field_prop_combo.properties.get( property, None) or "") field_prop_vals.append(field_prop_combo.field_value) padding_list_len = ( max_field_prop_combos[field.field_name] - cur_combo_count) * (cur_prop_count + 1) field_prop_vals.extend( empty_padding_list(padding_list_len)) # import pdb; pdb.set_trace(); field_vals.extend(field_prop_vals) row = tuple(common_vals[2 if html_response else 0:] + field_vals + item_att_vals + user_vals + group_vals) item_sheet["rows"].append(row) item_sheet["rows"] = tuple(item_sheet["rows"]) excel_sheets[data_type.tag] = item_sheet if html_response: return excel_sheets header_groups = [("types", excel_sheets["types"]["headers"])] value_groups = [("types", excel_sheets["types"]["rows"])] for data_type in data_types_book: header_groups.append( (data_type.tag, excel_sheets[data_type.tag]["headers"])) value_groups.append( (data_type.tag, excel_sheets[data_type.tag]["rows"])) fd, path = tempfile.mkstemp() with os.fdopen(fd, 'w') as temp: export_raw(tuple(header_groups), tuple(value_groups), temp) format = Format.XLS_2007 fl = open(path, 'r') fileref = expose_download( fl.read(), 60 * 10, mimetype=Format.from_format(format).mimetype, content_disposition='attachment; filename="%s_fixtures.xlsx"' % domain, ) return json_response({"download_id": fileref.download_id})
def excel_config(request, domain): if request.method == 'POST': if request.FILES: named_columns = request.POST['named_columns'] uses_headers = named_columns == 'yes' uploaded_file_handle = request.FILES['file'] extension = os.path.splitext( uploaded_file_handle.name)[1][1:].strip().lower() if extension in ExcelFile.ALLOWED_EXTENSIONS: # NOTE: this is kinda messy and needs to be cleaned up but # just trying to get something functional in place. # We may not always be able to reference files from subsequent # views if your worker changes, so we have to store it elsewhere # using the soil framework. # stash content in the default storage for subsequent views file_ref = expose_download(uploaded_file_handle.read(), expiry=1 * 60 * 60) request.session[EXCEL_SESSION_ID] = file_ref.download_id spreadsheet = _get_spreadsheet(file_ref, uses_headers) if not spreadsheet: return _spreadsheet_expired(request, domain) columns = spreadsheet.get_header_columns() row_count = spreadsheet.get_num_rows() if row_count > MAX_ALLOWED_ROWS: messages.error( request, _('Sorry, your spreadsheet is too big. ' 'Please reduce the number of ' 'rows to less than %s and try again') % MAX_ALLOWED_ROWS) elif row_count == 0: messages.error( request, 'Your spreadsheet is empty. Please try again with a different spreadsheet.' ) else: # get case types in this domain case_types = [] for row in CommCareCase.view('hqcase/types_by_domain', reduce=True, group=True, startkey=[domain], endkey=[domain, {}]).all(): if not row['key'][1] in case_types: case_types.append(row['key'][1]) if len(case_types) > 0: return render( request, "importer/excel_config.html", { 'named_columns': named_columns, 'columns': columns, 'case_types': case_types, 'domain': domain, 'report': { 'name': 'Import: Configuration' }, 'slug': base.ImportCases.slug }) else: messages.error( request, _('No cases have been submitted to this domain. ' 'You cannot update case details from an Excel ' 'file until you have existing cases.')) else: messages.error( request, _('The Excel file you chose could not be processed. ' 'Please check that it is saved as a Microsoft Excel ' '97/2000 .xls file.')) else: messages.error(request, _('Please choose an Excel file to import.')) #TODO show bad/invalid file error on this page return HttpResponseRedirect(base.ImportCases.get_url(domain=domain))
def excel_config(request, domain): if request.method != 'POST': return HttpResponseRedirect(base.ImportCases.get_url(domain=domain)) if not request.FILES: return render_error(request, domain, 'Please choose an Excel file to import.') named_columns = request.POST.get('named_columns') == "on" uploaded_file_handle = request.FILES['file'] extension = os.path.splitext( uploaded_file_handle.name)[1][1:].strip().lower() # NOTE: We may not always be able to reference files from subsequent # views if your worker changes, so we have to store it elsewhere # using the soil framework. if extension not in importer_util.ExcelFile.ALLOWED_EXTENSIONS: return render_error( request, domain, 'The Excel file you chose could not be processed. ' 'Please check that it is saved as a Microsoft ' 'Excel 97/2000 .xls file.') # stash content in the default storage for subsequent views file_ref = expose_download(uploaded_file_handle.read(), expiry=1 * 60 * 60) request.session[EXCEL_SESSION_ID] = file_ref.download_id spreadsheet = importer_util.get_spreadsheet(file_ref, named_columns) if not spreadsheet: return _spreadsheet_expired(request, domain) columns = spreadsheet.get_header_columns() row_count = spreadsheet.get_num_rows() if row_count == 0: return render_error( request, domain, 'Your spreadsheet is empty. ' 'Please try again with a different spreadsheet.') case_types_from_apps = [] # load types from all modules for row in ApplicationBase.view('app_manager/types_by_module', reduce=True, group=True, startkey=[domain], endkey=[domain, {}]).all(): if not row['key'][1] in case_types_from_apps: case_types_from_apps.append(row['key'][1]) case_types_from_cases = [] # load types from all case records for row in CommCareCase.view('hqcase/types_by_domain', reduce=True, group=True, startkey=[domain], endkey=[domain, {}]).all(): if row['key'][1] and not row['key'][1] in case_types_from_cases: case_types_from_cases.append(row['key'][1]) # for this we just want cases that have data but aren't being used anymore case_types_from_cases = filter(lambda x: x not in case_types_from_apps, case_types_from_cases) if len(case_types_from_apps) == 0 and len(case_types_from_cases) == 0: return render_error( request, domain, 'No cases have been submitted to this domain and there are no ' 'applications yet. You cannot import case details from an Excel ' 'file until you have existing cases or applications.') return render( request, "importer/excel_config.html", { 'named_columns': named_columns, 'columns': columns, 'case_types_from_cases': case_types_from_cases, 'case_types_from_apps': case_types_from_apps, 'domain': domain, 'report': { 'name': 'Import: Configuration' }, 'slug': base.ImportCases.slug })
from corehq.apps.locations.bulk import import_locations from corehq.apps.commtrack.bulk import import_stock_reports from soil.util import expose_download @task def import_locations_async(download_id, domain, file_ref_id, update_existing=False): """ Asynchronously import locations. download_id is for showing the results to the user through soil. file_ref_id is also a download_id, but should be a pointer to the import file. """ download_ref = DownloadBase.get(file_ref_id) with open(download_ref.get_filename(), 'rb') as f: results_msg = '\n'.join(import_locations(domain, f, update_existing)) ref = expose_download(results_msg, 60*60*3) cache.set(download_id, ref) @task def import_stock_reports_async(download_id, domain, file_ref_id): """ Same idea but for stock reports """ download_ref = DownloadBase.get(file_ref_id) with open(download_ref.get_filename(), 'rb') as f: try: results = import_stock_reports(domain, f) except Exception, e: results = "ERROR: %s" % e ref = expose_download(results, 60*60*3, mimetype='text/csv') cache.set(download_id, ref)
def dump_users_and_groups(domain, download_id, user_filters, task): from corehq.apps.users.views.mobile.custom_data_fields import UserFieldsView def _load_memoizer(domain): group_memoizer = GroupMemoizer(domain=domain) # load groups manually instead of calling group_memoizer.load_all() # so that we can detect blank groups blank_groups = set() for group in Group.by_domain(domain): if group.name: group_memoizer.add_group(group) else: blank_groups.add(group) if blank_groups: raise GroupNameError(blank_groups=blank_groups) return group_memoizer writer = Excel2007ExportWriter(format_as_text=True) group_memoizer = _load_memoizer(domain) location_cache = LocationIdToSiteCodeCache(domain) users_groups_count = count_users_and_groups(domain, user_filters, group_memoizer) DownloadBase.set_progress(task, 0, users_groups_count) user_data_model = CustomDataFieldsDefinition.get_or_create( domain, UserFieldsView.field_type ) user_headers, user_rows = parse_users( group_memoizer, domain, user_data_model, location_cache, user_filters, task, users_groups_count, ) group_headers, group_rows = parse_groups(group_memoizer.groups) headers = [ ('users', [user_headers]), ('groups', [group_headers]), ] rows = [ ('users', user_rows), ('groups', group_rows), ] use_transfer = settings.SHARED_DRIVE_CONF.transfer_enabled filename = "{}_users_{}.xlsx".format(domain, uuid.uuid4().hex) file_path = get_download_file_path(use_transfer, filename) writer.open( header_table=headers, file=file_path, ) writer.write(rows) writer.close() expose_download(use_transfer, file_path, filename, download_id, 'xlsx') DownloadBase.set_progress(task, users_groups_count, users_groups_count)
def excel_config(request, domain): """ Step one of three. This is the initial post when the user uploads the excel file named_columns: Whether or not the first row of the excel sheet contains header strings for the columns. This defaults to True and should potentially not be an option as it is always used due to how important it is to see column headers in the rest of the importer. """ if request.method != "POST": return HttpResponseRedirect(base.ImportCases.get_url(domain=domain)) if not request.FILES: return render_error(request, domain, "Please choose an Excel file to import.") named_columns = request.POST.get("named_columns") == "on" uploaded_file_handle = request.FILES["file"] extension = os.path.splitext(uploaded_file_handle.name)[1][1:].strip().lower() # NOTE: We may not always be able to reference files from subsequent # views if your worker changes, so we have to store it elsewhere # using the soil framework. if extension not in importer_util.ExcelFile.ALLOWED_EXTENSIONS: return render_error( request, domain, "The Excel file you chose could not be processed. " "Please check that it is saved as a Microsoft " "Excel 97/2000 .xls file.", ) # stash content in the default storage for subsequent views file_ref = expose_download(uploaded_file_handle.read(), expiry=1 * 60 * 60) request.session[EXCEL_SESSION_ID] = file_ref.download_id spreadsheet = importer_util.get_spreadsheet(file_ref, named_columns) if not spreadsheet: return _spreadsheet_expired(request, domain) columns = spreadsheet.get_header_columns() row_count = spreadsheet.get_num_rows() if row_count == 0: return render_error( request, domain, "Your spreadsheet is empty. " "Please try again with a different spreadsheet." ) case_types_from_apps = [] # load types from all modules for row in ApplicationBase.view( "app_manager/types_by_module", reduce=True, group=True, startkey=[domain], endkey=[domain, {}] ).all(): if not row["key"][1] in case_types_from_apps: case_types_from_apps.append(row["key"][1]) case_types_from_cases = [] # load types from all case records for row in CommCareCase.view( "hqcase/types_by_domain", reduce=True, group=True, startkey=[domain], endkey=[domain, {}] ).all(): if row["key"][1] and not row["key"][1] in case_types_from_cases: case_types_from_cases.append(row["key"][1]) # for this we just want cases that have data but aren't being used anymore case_types_from_cases = filter(lambda x: x not in case_types_from_apps, case_types_from_cases) if len(case_types_from_apps) == 0 and len(case_types_from_cases) == 0: return render_error( request, domain, "No cases have been submitted to this domain and there are no " "applications yet. You cannot import case details from an Excel " "file until you have existing cases or applications.", ) return render( request, "importer/excel_config.html", { "named_columns": named_columns, "columns": columns, "case_types_from_cases": case_types_from_cases, "case_types_from_apps": case_types_from_apps, "domain": domain, "report": {"name": "Import: Configuration"}, "slug": base.ImportCases.slug, }, )
def excel_config(request, domain): if request.method != 'POST': return HttpResponseRedirect(base.ImportCases.get_url(domain=domain)) if not request.FILES: return render_error(request, domain, 'Please choose an Excel file to import.') named_columns = request.POST.get('named_columns') == "on" uploaded_file_handle = request.FILES['file'] extension = os.path.splitext(uploaded_file_handle.name)[1][1:].strip().lower() # NOTE: We may not always be able to reference files from subsequent # views if your worker changes, so we have to store it elsewhere # using the soil framework. if extension not in ExcelFile.ALLOWED_EXTENSIONS: return render_error(request, domain, 'The Excel file you chose could not be processed. ' 'Please check that it is saved as a Microsoft ' 'Excel 97/2000 .xls file.') # stash content in the default storage for subsequent views file_ref = expose_download(uploaded_file_handle.read(), expiry=1*60*60) request.session[EXCEL_SESSION_ID] = file_ref.download_id spreadsheet = importer_util.get_spreadsheet(file_ref, named_columns) if not spreadsheet: return _spreadsheet_expired(request, domain) columns = spreadsheet.get_header_columns() row_count = spreadsheet.get_num_rows() if row_count == 0: return render_error(request, domain, 'Your spreadsheet is empty. ' 'Please try again with a different spreadsheet.') case_types_from_apps = [] # load types from all modules for row in ApplicationBase.view('app_manager/types_by_module', reduce=True, group=True, startkey=[domain], endkey=[domain,{}]).all(): if not row['key'][1] in case_types_from_apps: case_types_from_apps.append(row['key'][1]) case_types_from_cases = [] # load types from all case records for row in CommCareCase.view('hqcase/types_by_domain', reduce=True, group=True, startkey=[domain], endkey=[domain,{}]).all(): if not row['key'][1] in case_types_from_cases: case_types_from_cases.append(row['key'][1]) # for this we just want cases that have data but aren't being used anymore case_types_from_cases = filter(lambda x: x not in case_types_from_apps, case_types_from_cases) if len(case_types_from_apps) == 0 and len(case_types_from_cases) == 0: return render_error(request, domain, 'No cases have been submitted to this domain and there are no ' 'applications yet. You cannot import case details from an Excel ' 'file until you have existing cases or applications.') return render(request, "importer/excel_config.html", { 'named_columns': named_columns, 'columns': columns, 'case_types_from_cases': case_types_from_cases, 'case_types_from_apps': case_types_from_apps, 'domain': domain, 'report': { 'name': 'Import: Configuration' }, 'slug': base.ImportCases.slug})