Esempio n. 1
0
def extra():
    l_bc, r_bc = 0., 1.
    lmbda = 12
    N = 50
    D, x = cheb_vectorized(N)
    M = np.dot(D, D)
    guess = (.5 * (x + 1))  #**lmbda
    N2 = 500

    def pseudospectral_ode(y):
        out = np.zeros(y.shape)
        ypp = M.dot(y)
        out = 4 * ypp - lmbda * np.sinh(lmbda * y)
        out[0], out[-1] = y[0] - r_bc, y[-1] - l_bc
        return out

    u = root(pseudospectral_ode, guess, method='lm', tol=1e-9)
    print u.success
    num_sol = BarycentricInterpolator(x, u.x)

    xx = np.linspace(-1, 1, N2)
    uu = num_sol.__call__(xx)
    plt.plot(x, guess, '*b')
    plt.plot(xx, uu, '-r')  # Numerical solution via
    # the pseudospectral method
    plt.axis([-1., 1., 0 - .1, 1.1])
    plt.show()
    plt.clf()
Esempio n. 2
0
def exercise2():
    # Solves the Poisson boundary value problem u''(x) = f(x), u(-1) = u(1) = 0
    def f(x):
        return np.exp(2. * x)

    def anal_sol(x):
        return (np.exp(2. * x) - np.sinh(2.) * x - np.cosh(2.)) / 4.

    N = 3
    D, x = cheb_vectorized(N)

    A = np.dot(D, D)[1:N:1, 1:N:1]
    u = np.zeros(x.shape)
    u[1:N] = solve(A, f(x[1:N:1]))

    xx = np.linspace(-1, 1, 50)
    uu = (np.poly1d(np.polyfit(x, u, N)))(xx)
    print "Max error is ", np.max(np.abs(uu - anal_sol(xx)))

    plt.plot(x, u, '*r')
    plt.plot(xx, uu, '-r')
    plt.plot(xx, anal_sol(xx), '-k')
    plt.axis([-1., 1., -2.5, .5])
    # plt.savefig('chebyshev_points.pdf')
    plt.show()
    plt.clf()
Esempio n. 3
0
def exercise2():
	# Solves the Poisson boundary value problem u''(x) = f(x), u(-1) = u(1) = 0
	def f(x):
		return np.exp(2.*x)

	def anal_sol(x):
		return (np.exp(2.*x) - np.sinh(2.)*x - np.cosh(2.))/4.

	N = 3
	D, x = cheb_vectorized(N)

	A = np.dot(D, D)[1:N:1,1:N:1]
	u = np.zeros(x.shape)
	u[1:N] = solve(A, f(x[1:N:1]))

	xx = np.linspace(-1, 1, 50)
	uu = (np.poly1d(np.polyfit(x, u, N)))(xx)
	print "Max error is ", np.max(np.abs(uu - anal_sol(xx)))

	plt.plot(x, u, '*r')
	plt.plot(xx, uu, '-r')
	plt.plot(xx, anal_sol(xx), '-k')
	plt.axis([-1.,1.,-2.5,.5])
	# plt.savefig('chebyshev_points.pdf')
	plt.show()
	plt.clf()
Esempio n. 4
0
def extra():
	l_bc, r_bc = 0., 1.
	lmbda = 12
	N = 50
	D, x = cheb_vectorized(N)
	M = np.dot(D, D)
	guess = (.5*(x+1))#**lmbda
	N2 = 500

	def pseudospectral_ode(y):
		out = np.zeros(y.shape)
		ypp = M.dot(y)
		out = 4*ypp - lmbda*np.sinh(lmbda*y)
		out[0], out[-1] = y[0] - r_bc, y[-1] - l_bc
		return out

	u = root(pseudospectral_ode,guess,method='lm',tol=1e-9)
	print u.success
	num_sol = BarycentricInterpolator(x,u.x)

	xx = np.linspace(-1, 1, N2)
	uu = num_sol.__call__(xx)
	plt.plot(x,guess,'*b')
	plt.plot(xx, uu, '-r')						# Numerical solution via
												# the pseudospectral method
	plt.axis([-1.,1.,0-.1,1.1])
	plt.show()
	plt.clf()
Esempio n. 5
0
def nonlinear_minimal_area_surface_of_revolution():
	l_bc, r_bc = 1., 7.
	N = 80
	D, x = cheb_vectorized(N)
	M = np.dot(D, D)
	guess = 1. + (x--1.)*((r_bc - l_bc)/2.)
	
	def pseudospectral_ode(y):
		out = np.zeros(y.shape)
		yp, ypp = D.dot(y), M.dot(y)
		out = y*ypp - 1. - yp**2.
		out[0], out[-1] = y[0] - r_bc, y[-1] - l_bc
		return out
	
	u = root(pseudospectral_ode,guess,method='lm',tol=1e-9)
	return x, u.x
Esempio n. 6
0
def nonzeroDirichlet():
    # Solves the Poisson boundary value problem
    # u''(x) + u'(x) = f(x),
    # u(-1) = a
    # u(1) = b
    a, b = 2, -1

    def f(x):
        return -(b - a) / 2. * np.ones(x.shape) + np.exp(3. * x)

    def G(x):
        return (b - a) / 2. * np.ones(x.shape) * x + (b + a) / 2. * np.ones(
            x.shape)

    def anal_sol(x):
        # out = ( np.exp(-x)/( 12.*(-1 +np.exp(1))*(1 + np.exp(1))*np.exp(3))  *
        # (-12.*a*np.exp(x+3.)+12.*a*np.exp(4) + 12.*b*np.exp(x+5)-12*b*np.exp(4) -
        #	np.exp(4*x+3) + np.exp(4*x+5) - np.exp(x+8 )+ np.exp(x)- np.exp(1) + np.exp(7)
        #	)
        #	  )
        N, B = np.array([[1., np.exp(1)],
                         [1, np.exp(-1)]]), np.array([[a - np.exp(-3) / 12.],
                                                      [b - np.exp(3) / 12.]])
        C = solve(N, B)
        return C[0] + C[1] * np.exp(-x) + np.exp(3. * x) / 12.

    N = 7
    D, x = cheb_vectorized(N)

    A = np.dot(D, D)[1:N:1, 1:N:1]
    u = np.zeros(x.shape)
    u[1:N] = solve(A + D[1:N:1, 1:N:1], f(x[1:N:1]))

    xx = np.linspace(-1, 1, 50)
    uu = (np.poly1d(np.polyfit(x, u, N)))(xx)
    print "Max error is ", np.max(np.abs(uu + G(xx) - anal_sol(xx)))

    # plt.plot(x,u+G(x), '*k')
    # plt.plot(xx,uu+G(xx), '-r')
    plt.plot(xx, anal_sol(xx))
    plt.xlabel('$x$')
    plt.ylabel('$u$')
    # plt.axis([-1.,1.,-2.5,.5])
    # plt.savefig('nonzeroDirichlet.pdf')
    plt.show()
    plt.clf()
Esempio n. 7
0
def nonzeroDirichlet():
	# Solves the Poisson boundary value problem
	# u''(x) + u'(x) = f(x),
	# u(-1) = a
	# u(1) = b
	a, b = 2, -1

	def f(x):
		return -(b-a)/2.*np.ones(x.shape)+ np.exp(3.*x)

	def G(x):
		return (b-a)/2.*np.ones(x.shape) *x + (b+a)/2.*np.ones(x.shape)

	def anal_sol(x):
		# out = ( np.exp(-x)/( 12.*(-1 +np.exp(1))*(1 + np.exp(1))*np.exp(3))  *
		# (-12.*a*np.exp(x+3.)+12.*a*np.exp(4) + 12.*b*np.exp(x+5)-12*b*np.exp(4) -
		#	np.exp(4*x+3) + np.exp(4*x+5) - np.exp(x+8 )+ np.exp(x)- np.exp(1) + np.exp(7)
		#	)
		#	  )
		N, B = np.array([[1.,np.exp(1)],[1,np.exp(-1)]]), np.array([[a-np.exp(-3)/12.], [b-np.exp(3)/12.]])
		C = solve(N,B)
		return C[0] + C[1]*np.exp(-x) + np.exp(3.*x)/12.


	N = 7
	D, x = cheb_vectorized(N)

	A = np.dot(D, D)[1:N:1,1:N:1]
	u = np.zeros(x.shape)
	u[1:N] = solve(A + D[1:N:1,1:N:1], f(x[1:N:1]))

	xx = np.linspace(-1, 1, 50)
	uu = (np.poly1d(np.polyfit(x,u,N)))(xx)
	print "Max error is ", np.max(np.abs(uu + G(xx) - anal_sol(xx)))

	# plt.plot(x,u+G(x), '*k')
	# plt.plot(xx,uu+G(xx), '-r')
	plt.plot(xx, anal_sol(xx))
	plt.xlabel('$x$')
	plt.ylabel('$u$')
	# plt.axis([-1.,1.,-2.5,.5])
	# plt.savefig('nonzeroDirichlet.pdf')
	plt.show()
	plt.clf()
Esempio n. 8
0
def deriv_matrix_exercise1():
    def f(x):
        return np.exp(x) * np.cos(6. * x)

    def fp(x):
        return np.exp(x) * (np.cos(6. * x) - 6. * np.sin(6. * x))

    N = 10
    D, x = cheb_vectorized(N)
    f_exact, fp_exact = f(x), fp(x)
    xx = np.linspace(-1, 1, 200)
    plt.plot(xx, fp(xx), '-k')  # Exact Derivative

    uu = (np.poly1d(np.polyfit(x, D.dot(f(x)), N)))(xx)

    plt.plot(x, D.dot(f(x)),
             '*r')  # Approximation to derivative at grid points
    plt.plot(xx, uu, '-r')  # Approximation to derivative at other values
    # plt.savefig('equally_spaced_points.pdf')
    plt.show()
    plt.clf()
    print "max error = \n", np.max(np.abs(D.dot(f(x)) - fp(x)))
Esempio n. 9
0
def deriv_matrix_exercise1():

	def f(x):
		return np.exp(x)*np.cos(6.*x)

	def fp(x):
		return np.exp(x)*(np.cos(6.*x) - 6.*np.sin(6.*x))

	N = 10
	D,x = cheb_vectorized(N)
	f_exact, fp_exact = f(x), fp(x)
	xx = np.linspace(-1,1,200)
	plt.plot(xx,fp(xx),'-k') # Exact Derivative

	uu = (np.poly1d(np.polyfit(x, D.dot(f(x) ), N)))(xx)

	plt.plot(x,D.dot(f(x)),'*r')	# Approximation to derivative at grid points
	plt.plot(xx,uu,'-r')			# Approximation to derivative at other values
	# plt.savefig('equally_spaced_points.pdf')
	plt.show()
	plt.clf()
	print "max error = \n", np.max(np.abs( D.dot(f(x)) - fp(x)	 ))
Esempio n. 10
0
def nonlinear_minimal_area_surface_of_revolution():
    l_bc, r_bc = 1., 7.
    N = 80
    D, x = cheb_vectorized(N)
    M = np.dot(D, D)
    guess = 1. + (x - -1.) * ((r_bc - l_bc) / 2.)
    N2 = 50

    def pseudospectral_ode(y):
        out = np.zeros(y.shape)
        yp, ypp = D.dot(y), M.dot(y)
        out = y * ypp - 1. - yp**2.
        out[0], out[-1] = y[0] - r_bc, y[-1] - l_bc
        return out

    u = root(pseudospectral_ode, guess, method='lm', tol=1e-9)
    num_sol = BarycentricInterpolator(x, u.x)

    # Up to this point we have found the numerical solution
    # using the pseudospectral method. In the code that follows
    # we check that solution with the analytic solution,
    # and graph the results

    def f(x):
        return np.array([
            x[1] * np.cosh((-1. + x[0]) / x[1]) - l_bc, x[1] * np.cosh(
                (1. + x[0]) / x[1]) - r_bc
        ])

    parameters = root(f, np.array([1., 1.]), method='lm', tol=1e-9)
    A, B = parameters.x[0], parameters.x[1]

    def analytic_solution(x):
        out = B * np.cosh((x + A) / B)
        return out

    xx = np.linspace(-1, 1, N2)
    uu = num_sol.__call__(xx)
    # print "Max error is ", np.max(np.abs(uu - analytic_solution(xx)))
    plt.plot(x, guess, '-b')
    plt.plot(xx, uu, '-r')  # Numerical solution via
    # the pseudospectral method
    plt.plot(xx, analytic_solution(xx), '*k')  # Analytic solution
    plt.axis([-1., 1., l_bc - 1., r_bc + 1.])
    # plt.show()
    plt.clf()

    theta = np.linspace(0, 2 * np.pi, N2)
    X, Theta = np.meshgrid(xx, theta, indexing='ij')
    print "\nxx = \n", xx
    print "\nuu = \n", uu
    F = uu[:, np.newaxis] + np.zeros(uu.shape)
    print "\nX = \n", X
    print "\nTheta = \n", Theta
    print "\nF = \n", F
    Y = F * np.cos(Theta)
    Z = F * np.sin(Theta)

    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
    # X, Y, Z = axes3d.get_test_data(0.05)
    ax.plot_wireframe(X, Y, Z, rstride=1, cstride=1)
    print ax.azim, ax.elev
    ax.azim = -65
    ax.elev = 0
    # ax.view_init(elev=-60, azim=30)
    # plt.savefig('minimal_surface.pdf')
    plt.show()
Esempio n. 11
0
def nonlinear_minimal_area_surface_of_revolution():
	l_bc, r_bc = 1., 7.
	N = 80
	D, x = cheb_vectorized(N)
	M = np.dot(D, D)
	guess = 1. + (x--1.)*((r_bc - l_bc)/2.)
	N2 = 50

	def pseudospectral_ode(y):
		out = np.zeros(y.shape)
		yp, ypp = D.dot(y), M.dot(y)
		out = y*ypp - 1. - yp**2.
		out[0], out[-1] = y[0] - r_bc, y[-1] - l_bc
		return out

	u = root(pseudospectral_ode,guess,method='lm',tol=1e-9)
	num_sol = BarycentricInterpolator(x,u.x)

	# Up to this point we have found the numerical solution
	# using the pseudospectral method. In the code that follows
	# we check that solution with the analytic solution,
	# and graph the results

	def f(x):
		return np.array([ x[1]*np.cosh((-1.+x[0])/x[1])-l_bc,
						 x[1]*np.cosh((1.+x[0])/x[1])-r_bc])


	parameters = root(f,np.array([1.,1.]),method='lm',tol=1e-9)
	A, B = parameters.x[0], parameters.x[1]
	def analytic_solution(x):
		out = B*np.cosh((x + A)/B)
		return out


	xx = np.linspace(-1, 1, N2)
	uu = num_sol.__call__(xx)
	# print "Max error is ", np.max(np.abs(uu - analytic_solution(xx)))
	plt.plot(x,guess,'-b')
	plt.plot(xx, uu, '-r')						# Numerical solution via
												# the pseudospectral method
	plt.plot(xx, analytic_solution(xx), '*k')   # Analytic solution
	plt.axis([-1.,1.,l_bc-1.,r_bc +1.])
	# plt.show()
	plt.clf()

	theta = np.linspace(0,2*np.pi,N2)
	X,Theta = np.meshgrid(xx,theta,indexing='ij')
	print "\nxx = \n", xx
	print "\nuu = \n", uu
	F = uu[:,np.newaxis] +np.zeros(uu.shape)
	print "\nX = \n", X
	print "\nTheta = \n", Theta
	print "\nF = \n", F
	Y = F*np.cos(Theta)
	Z = F*np.sin(Theta)

	fig = plt.figure()
	ax = fig.add_subplot(111, projection='3d')
	# X, Y, Z = axes3d.get_test_data(0.05)
	ax.plot_wireframe(X, Y, Z, rstride=1, cstride=1)
	print ax.azim, ax.elev
	ax.azim=-65; ax.elev = 0
	# ax.view_init(elev=-60, azim=30)
	# plt.savefig('minimal_surface.pdf')
	plt.show()