Esempio n. 1
0
 def test_grad_noreg(self):
     X, y = data1()
     np.testing.assert_allclose(
         solution.grad(np.array([0, 0, 0, 0]), X, y, 0.0),
         [-0.2313, 0.1625, -0.6625, -0.2563], rtol=1e-3)
     np.testing.assert_allclose(
         solution.grad(np.array([0.1, -0.1, 0.1, 0.1]), X, y, 0.0),
         [0.5610, 0.5969, -0.1870, -0.1151], rtol=1e-3)
     np.testing.assert_allclose(
         solution.grad(np.array([-1.06, -5.39, 7.64, 3.79]), X, y, 0.0),
         [0., 0., 0., 0.], atol=1e-3)
     X, y = data2()
     np.testing.assert_allclose(
         solution.grad(np.array([0.1, -0.1, 0.1, 0.1]), X, y, 0.0),
         [1.3211, 1.0822, 0.1827, -0.0282], rtol=1e-3)
Esempio n. 2
0
    def test_z_grad_cost_compatible(self):
        X, y = data1()

        thetas = [[-0.231, 0.162, -0.662, -0.256],
                  [0.561, 0.597, -0.187, -0.115], [-1.06, -5.39, 7.64, 3.79]]

        for theta in thetas:
            for lambda_ in [0.0, 1.0, 100.0, 0.0001]:
                theta = np.array(theta)
                an_grad = grad(theta, X, y, lambda_)
                n_grad = num_grad(theta, X, y, lambda_)
                np.testing.assert_almost_equal(
                    an_grad,
                    n_grad,
                    decimal=5,
                    err_msg="lambvda: %d theta: %s" % (lambda_, theta))
Esempio n. 3
0
    def test_z_grad_cost_compatible(self):
        X, y = data1()

        def diff_numberic_analitic_grad(theta, lambda_, analitic_grad):
            vec = solution.num_grad(theta, X, y, lambda_)
            return np.max(np.abs(analitic_grad-vec))

        thetas = [[-0.231, 0.162, -0.662, -0.256],
                  [0.561, 0.597, -0.187, -0.115],
                  [-1.06, -5.39, 7.64, 3.79]]
    
        for theta in thetas:
            for lambda_ in [0.0, 1.0, 100.0, 0.0001]:
                theta = np.array(theta)
                an_grad = solution.grad(theta, X, y, lambda_)
                self.assertAlmostEqual(
                    diff_numberic_analitic_grad(theta, lambda_, an_grad),
                    0.0, places=6)