def test_load(self): self.assertEqual( 'File 123 loaded', solution.load('1', self.list_of_names_file1) ) self.assertEqual( 'There is no list with that index', solution.load('4', self.list_of_names_file1) )
def test_load(self): list_of_orders = [] dict_orders = {'dayana': 10} save(dict_orders, list_of_orders) save(dict_orders, list_of_orders) save(dict_orders, list_of_orders) self.assertEqual(2, load('1', list_of_orders, True)) self.assertEqual( 'You have unsaved order.' + '\n' + 'If you wish to discard the current order, type load again', load(10, list_of_orders, False) )
diff = points - numpy.array([x, y]) dists = (diff[:, 0]**2 + diff[:, 1]**2)**0.5 #euclidean ind = numpy.argsort(dists) prob[yi, xi] = classifier(X[ind[0]])[1] pylab.imshow(prob, extent=(minx, maxx, maxy, miny)) pylab.xlim(minx, maxx) pylab.ylim(miny, maxy) pylab.xlabel(at1) pylab.ylabel(at2) pylab.show() X, y = solution.load('reg.data') learner = solution.LogRegLearner(lambda_=0.) classifier = learner(X, y) draw_decision(X, y, classifier, 0, 1) learner = solution.LogRegLearner(lambda_=0.01) classifier = learner(X, y) draw_decision(X, y, classifier, 0, 1) learner = solution.LogRegLearner(lambda_=0.3) classifier = learner(X, y) draw_decision(X, y, classifier, 0, 1)
def test_load(self): self.assertEqual('File 123 loaded', solution.load('1', self.list_of_names_file1)) self.assertEqual('There is no list with that index', solution.load('4', self.list_of_names_file1))
ind = np.argsort(dists) prob[yi, xi] = classifier(X[ind[0]])[1] pyplot.imshow(prob, extent=(minx, maxx, maxy, miny), cmap="seismic") pyplot.xlim(minx, maxx) pyplot.ylim(miny, maxy) pyplot.xlabel(at1) pyplot.ylabel(at2) pyplot.savefig(file_name + ".png") pyplot.show() if __name__ == "__main__": X, y = load('./data/reg.data') # lambda_ = 0 # learner = LogRegLearner(lambda_=0.) # classifier = learner(X, y) # draw_decision(X, y, classifier, 0, 1, file_name="lambda0") # learner = LogRegLearner(lambda_=10) # classifier = learner(X, y) # draw_decision(X, y, classifier, 0, 1, file_name="lambda1") # # learner = LogRegLearner(lambda_=0.01) # classifier = learner(X, y) # draw_decision(X, y, classifier, 0, 1, file_name="lambda3") # # learner = LogRegLearner(lambda_=0.0001)
for c, (x, y) in zip(y, points): pylab.text(x, y, str(c), ha="center", va="center") pylab.scatter([x], [y], c=["b", "r"][c != 0], s=200) num = grid prob = numpy.zeros([num, num]) for xi, x in enumerate(numpy.linspace(minx, maxx, num=num)): for yi, y in enumerate(numpy.linspace(miny, maxy, num=num)): #probability of the closest example diff = points - numpy.array([x, y]) dists = (diff[:, 0]**2 + diff[:, 1]**2)**0.5 #euclidean ind = numpy.argsort(dists) prob[yi, xi] = classifier(X[ind[0]])[1] pylab.imshow(prob, extent=(minx, maxx, maxy, miny)) pylab.xlim(minx, maxx) pylab.ylim(miny, maxy) pylab.xlabel(at1) pylab.ylabel(at2) pylab.show() X, y = load('reg.data') learner = LogRegLearner(lambda_=0.1) classifier = learner(X, y) draw_decision(X, y, classifier, 0, 1)
def test_load(self): file_ = open("orders_0000_00_00_00_00_00", "w") file_.write("tester - 42.00") file_.close() result = solution.load(1, self.order) self.assertEqual({"tester": 42.00}, result)
def test_save_load(self): orders = {'Tyrion': '3.45', 'Kvothe': '4.62'} number_saves = 1 solution.save(orders, number_saves) self.assertEqual({'Tyrion': '3.45', 'Kvothe': '4.62'}, solution.load("load 1"))
# # X, y = s.load('reg.data') # # lambdas = [10, 0.03, 0.] # # for i in lambdas: # learner = s.LogRegLearner(lambda_=i) # classifier = learner(X, y) # # # s.draw_decision(i, X, y, classifier, 0, 1) # Part 3 test_cv: X, y = s.load('reg.data') lambdas = [10, 1, 0.5, 0.1, 0.075, 0.05, 0.03, 0.01, 0.001, 0.0001, 0.] lambdas_ca = {l: 0 for l in lambdas} for i in range(1,21): for l in lambdas: learner = s.LogRegLearner(lambda_=l) res = s.test_cv(learner, X, y, seed=i) ca = s.CA(y, res) lambdas_ca[l] += ca for l in lambdas_ca.keys():
test_cases = { 'a=ab;d=c8\nln=21\n222=ool': [{ 'a': 'ab', 'd': 'c8' }, { 'ln': '21' }, { '222': 'ool' }], '': {}, 'lns=123\nsad-ew=213;nm=20312': [{ 'lns': '123' }, { 'sad-ew': '213', 'nm': '20312' }], '\n\nsds=12321\n\nsadsa=2132;b=c': [{}, {}, { 'sds': '12321' }, {}, { 'sadsa': '2132', 'b': 'c' }] } for case, ans in test_cases.items(): load_result = load(case) store_result = store(ans) assert load_result == ans, print(load_result, ans) assert load(store_result) == ans, print(store_result, case)