def test_getEdgesColors(self):
        n = Node(0, 1)
        n.addEdge(2)
        n.addEdge(3)
        graph = dict([(0, n), (1, Node(1, 3, 2)), (2, Node(2, 3, 1)), (3, Node(3, 3, 5)), (4, Node(4, 3, 7))])

        self.assertEqual(n.getEdgesColors(graph), set([2, 1, 5]))
Esempio n. 2
0
    def test_connected_graph(self):
        a, b, c = [Node('a'), Node('b'), Node('c')]
        a.add_edge(b)
        b.add_edge(c)
        self.assertFalse(has_cycle([a, b, c]))

        c.add_edge(a)
        self.assertTrue(has_cycle([a, b, c]))
Esempio n. 3
0
    def test_deepest(self):
        a, b, c, d = Node('a'), Node('b'), Node('c'), Node('d')

        root = a
        root.left = b
        b.left = d
        root.right = c

        self.assertEqual(deepest(root), (d, 3))
    def test_solveWithBFS(self):
        n0 = Node(0, 1)
        n1 = Node(1, 2)
        n1.addEdge(0)
        n1.addEdge(3)
        n2 = Node(2, 1)
        n3 = Node(3, 1)
        graph = dict([(0, n0), (1, n1), (2, n2), (3, n3)])

        self.assertEqual(solver.solveWithBFS(graph), (2, [0, 1, 0, 0]))
Esempio n. 5
0
    def test_disconnected_graph(self):
        a, b, c, d, e = [Node('a'), Node('b'), Node('c'), Node('d'), Node('e')]

        # First cluster (no cycle)
        a.add_edge(b)

        # Second cluster (with cycle)
        c.add_edge(d)
        d.add_edge(e)
        e.add_edge(c)

        self.assertTrue(has_cycle([a, b, c, d, e]))
Esempio n. 6
0
  def test_connected_graph(self):
    a, b, c, d, e = Node('a'), Node('b'), Node('c'), Node('d'), Node('e')

    source, target = a, e

    # First path (distance: 30)
    a.add_edge(b, 10); b.add_edge(a, 10);
    b.add_edge(c, 10); c.add_edge(b, 10);
    c.add_edge(e, 10); e.add_edge(c, 10);

    # Second path (distance: 35)
    a.add_edge(d, 25); d.add_edge(a, 25);
    d.add_edge(e, 10); e.add_edge(d, 10);

    g = Graph([a,b,c,d,e])

    self.assertEqual(g.shortest_path(a, e), [a, b, c, e])
    def test_getEdgesColorsByDegree(self):
        n = Node(0, 1)
        n.addEdge(2)
        n.addEdge(3)
        n.addEdge(5)
        n.addEdge(6)
        n.addEdge(7)
        graph = dict([(0, n), (1, Node(1, 3, 5)), (2, Node(2, 3, 1)), (3, Node(3, 3, 2)), (4, Node(4, 3, 7)), (5, Node(5, 3, 2)), (6, Node(6, 3, 2)), (7, Node(7, 3, 5))])

        self.assertEqual(n.getEdgesColorsByDegree(graph, [2, 5]), [(5, [1, 7]), (2, [3, 5, 6])])
Esempio n. 8
0
    def test_evaluate(self):
        # Single sum: (15 + 5)
        root = Node(solver.PLUS, Node(15), Node(5))
        self.assertEqual(evaluate(root), 20)

        # Single subtraction: (15 - 5)
        root = Node(solver.MINUS, Node(15), Node(5))
        self.assertEqual(evaluate(root), 10)

        # Single multiplication: (15 * 5)
        root = Node(solver.TIMES, Node(15), Node(5))
        self.assertEqual(evaluate(root), 75)

        # Single division: (15 / 5)
        root = Node(solver.DIVIDE, Node(15), Node(5))
        self.assertEqual(evaluate(root), 3)

        # Chained operations: (3 + 2) * (4 + 5)
        root = Node(solver.TIMES, Node(solver.PLUS, Node(3), Node(2)),
                    Node(solver.PLUS, Node(4), Node(5)))
        self.assertEqual(evaluate(root), 45)
Esempio n. 9
0
    def test_invert_recursively(self):
        root = Node('a')
        root.left = Node('b')
        root.right = Node('c')
        root.left.left = Node('d')
        root.left.right = Node('e')
        root.right.left = Node('f')

        self.assertEqual(root.string(), "abdecf")
        Solution().invert_recursively(root)
        self.assertEqual(root.string(), "acfbed")
Esempio n. 10
0
    #return states[0]


n = 4
m = 4
x = 0
y = 0

x = 1
matrix = [[" " for j in range(m)] for i in range(n)]
for i in range(n):
    for j in range(m):
        matrix[i][j] = x
        x = x + 1
matrix[n - 1][m - 1] = " "
start_state = Node(matrix, 0, None)

num = randint(0, 100)

print("The maximum number of moves required = " + str(num))
for i in range(num):
    states = start_state.generate_successors()
    shuffle(states)
    start_state = Node(states[0].matrix, 0, None)

#matrix = [[1,2,3,4],[5,6,12,7],[9,10," ",11],[13,14,15,8]]
#start_state = Node(matrix, 0,None)

start_state.print_matrix()
curr_state = start_state
frontier = []
Esempio n. 11
0
    def test_full_binary_tree(self):
        #     1               1
        #    / \             / \
        #   2   3    ---->  0   3
        #  /   / \             / \
        # 0   9   4           9   4
        root = Node(1, Node(2, Node(0)), Node(3, Node(9), Node(4)))
        expected_str_output = "1\n03\n94"

        self.assertEqual(str(full_binary_tree(root)), expected_str_output)

        #     1                1
        #    / \              / \
        #   3   2    ---->   3   4
        #  / \   \          / \
        # 0   9   4        0   9
        root = Node(1, Node(3, Node(0), Node(9)), Node(2, right=Node(4)))
        expected_str_output = "1\n34\n09"

        self.assertEqual(str(full_binary_tree(root)), expected_str_output)

        #   1         3
        #  /   ---->
        # 3
        root = Node(1, Node(3))
        expected_str_output = "3"

        self.assertEqual(str(full_binary_tree(root)), expected_str_output)

        #   1           3
        #    \   ---->
        #     3
        root = Node(1, right=Node(3))
        expected_str_output = "3"

        self.assertEqual(str(full_binary_tree(root)), expected_str_output)
Esempio n. 12
0
    def test_values_at_height(self):
        root = Node(1)
        self.assertEqual(values_at_height(root, 1), [1])

        root = Node(1, Node(2), Node(3))
        self.assertEqual(values_at_height(root, 2), [2, 3])

        root = Node(1, Node(3))
        self.assertEqual(values_at_height(root, 2), [3])

        root = Node(1, Node(2), Node(3))
        self.assertEqual(values_at_height(root, 5), [])

        root = Node(1, Node(2, Node(4), Node(5)), Node(3, right=Node(7)))
        self.assertEqual(values_at_height(root, 3), [4, 5, 7])
Esempio n. 13
0
    def test_level_order(self):
        root = Node(1, Node(2), Node(3, Node(4), Node(5)))
        self.assertEqual(level_order(root), [1, 2, 3, 4, 5])

        root = Node(1, right=Node(3, right=Node(5)))
        self.assertEqual(level_order(root), [1, 3, 5])

        root = Node(1, left=Node(2, left=Node(4)))
        self.assertEqual(level_order(root), [1, 2, 4])

        root = Node(1)
        self.assertEqual(level_order(root), [1])

        root = None
        self.assertEqual(level_order(root), [])
Esempio n. 14
0
def dynamicMLA(maze, agent, reserved, start_wait = 0, resting = []):
    """Returns a list of tuples as a path from the given start to the given end in the given maze"""
    # copy waypoints
    waypoints = agent.waypoints.copy()
    # Initialize both open and closed list
    open_list = []
    closed_list = set()
    # Last label belongs to end node and is equal to number of waypoints + 1. Eg. 2 for an agent with 1 waypoint.
    start_node = Node(None, agent.start)
    start_node.g = start_node.h = start_node.f = 0
    if start_wait > 0:
        wait = construct_wait(start_node, 0, start_wait)
        if len(agent.waypoints) == 0:
            wait.l = 2
        open_list.append(wait)
    else:
        # Add the start node
        if len(agent.waypoints) == 0:
            start_node.l = 2
        open_list.append(start_node)
    # If we have waypoints, create waypoint node and set it to be the first waypoint.
    if len(agent.waypoints) > 0:
        waypoint = Node(None, select_waypoint(agent.start, waypoints))
        waypoint.g = waypoint.h = waypoint.f = 0
    else:
        waypoint = Node(None, (-1, -1))

    # mid_node = Node(None, agent.waypoints[0])
    # mid_node.g = mid_node.h = mid_node.f = 0
    end_node = Node(None, agent.end)
    end_node.g = end_node.h = end_node.f = 0



    # Loop until you find the end
    while len(open_list) > 0:
        # Get the current node
        current_node = heappop(open_list)
        closed_list.add(current_node)
        if current_node.position != agent.end and current_node.position in resting:
            if len(open_list) > 0:
                continue
        # TODO Do more efficiently. Checks if this space is reserved to avoid swap conflicts.
        if current_node.position in reserved and current_node.g + 1 in reserved[current_node.position]:
            continue
        # Found the waypoint
        if current_node.l == 1 and current_node == waypoint:
            # construct new search node.
            n_prime = Node(current_node.parent, current_node.position)
            n_prime.g = current_node.g
            # Waypoint is now the next waypoint.

            if len(waypoints) > 0:
                waypoint = Node(None, select_waypoint(current_node.position, waypoints))
                n_prime.h = abs(current_node.position[0] - waypoint.position[0]) + abs(
                    current_node.position[1] - waypoint.position[1])
            else:
                n_prime.l = 2
                waypoint = Node(None, (-1, -1))
                n_prime.h = abs(current_node.position[0] - end_node.position[0]) + abs(
                    current_node.position[1] - end_node.position[1])
            # N_prime is the new search node, which has the same position as the current node, but with new label and new h.



            n_prime.f = n_prime.g + n_prime.h

            closed_list = set()
            open_list = []
            heappush(open_list, n_prime)
            continue
        if current_node.l == 2 and current_node == end_node:
            path = []
            current = current_node
            while current is not None:
                path.append(current)
                current = current.parent
            return path[::-1] # Return reversed path
        # Loop through children
        # for child in map(lambda x: Node(current_node, x),
        #                  maze.get_neighbours(current_node.position[0], current_node.position[1])):
        #     if child.position in reserved and current_node.g + 1 in reserved[child.position]:
        #         collision = True
        #         # Check if we can wait here. If not we dont consider this step.
        #         if current_node.position in reserved and current_node.g + 1 in reserved[child.position]:
        #             break
        #         # We can wait, so add a node to wait and then move into that position.
        #         elif child.position in reserved and current_node.g + 2 in reserved[child.position]:
        #             break
        #         else:
        #             wait = Node(current_node, current_node.position)
        #             wait.g = current_node.g + 1
        #             wait_move = Node(wait, child.position)
        #             wait_move.g = current_node.g + 2
        #             if child.l == 1:
        #                 child.h = abs(current_node.position[0] - waypoint.position[0]) + abs(
        #                     current_node.position[1] - waypoint.position[1])
        #             else:
        #                 child.h = abs(child.position[0] - end_node.position[0]) + abs(
        #                     child.position[1] - end_node.position[1])
        #             wait_move.f = wait_move.g + wait_move.f
        #             heappush(open_list, wait_move)
        for child in map(lambda x: Node(current_node, x), maze.get_neighbours(current_node.position[0], current_node.position[1])):

            # TODO USE HASHSET
            if child.position in reserved and current_node.g + 1 in reserved[child.position]:
                # Check if we can wait here. If not we dont consider this step.
                if current_node.position in reserved and current_node.g + 1 in reserved[child.position]:
                    break
                # We can wait, so add a node to wait and then move into that position.
                elif child.position in reserved and current_node.g + 2 in reserved[child.position]:
                    break
                else:
                    wait = Node(current_node, current_node.position)
                    wait.g = current_node.g + 1
                    wait_move = Node(wait, child.position)
                    wait_move.g = current_node.g + 2
                    if child.l == 1:
                        child.h = abs(current_node.position[0] - waypoint.position[0]) + abs(
                            current_node.position[1] - waypoint.position[1])
                    else:
                        child.h = abs(child.position[0] - end_node.position[0]) + abs(
                            child.position[1] - end_node.position[1])
                    wait_move.f = wait_move.g + wait_move.f
                    heappush(open_list, wait_move)
                continue
            # In case of collision
            # Child is on the closed list
            if child in closed_list:
                continue

            if child in open_list:
                continue
            # Create the f, g, and h values
            child.g = current_node.g + 1
            child.l = current_node.l
            if child.l == 1:
                child.h = abs(current_node.position[0] - waypoint.position[0]) + abs(current_node.position[1] - waypoint.position[1])
            else:
                child.h = abs(child.position[0] - end_node.position[0]) + abs(child.position[1] - end_node.position[1])
            child.f = child.g + child.h

            # Add the child to the open list
            heappush(open_list, child)
    if start_wait == 0:
        return dynamicMLA(maze, agent, reserved, 1, resting)
    else:
        return dynamicMLA(maze, agent, reserved, start_wait + 1, resting)
Esempio n. 15
0
 def test_remove_middle(self):
   head = Node(1, Node(2, Node(3, Node(4, Node(5)))))
   self.assertEqual(str(head), "[1, 2, 3, 4, 5]")
   
   head = remove_kth_last(head, 3)
   self.assertEqual(str(head), "[1, 2, 4, 5]")
Esempio n. 16
0
    def test_largest_bst(self):
        # BST on root + left branch
        root = Node(5, Node(4, Node(3), Node(7)), Node(6, Node(8), Node(9)))
        self.assertEqual(largest_bst(root), 3)

        # BST on root + right branch
        root = Node(5, Node(4, Node(6), Node(7)), Node(6, Node(2), Node(8)))
        self.assertEqual(largest_bst(root), 3)

        # Full tree is a BST
        root = Node(5, Node(4, Node(2, Node(0), Node(3)), Node(6)), Node(6))
        self.assertEqual(largest_bst(root), 4)

        # BST on a subtree in the left node
        root = Node(5, Node(8, Node(4, Node(1)), Node(9)),
                    Node(9, Node(10), Node(11)))
        self.assertEqual(largest_bst(root), 3)

        # BST on a subtree in the right node
        root = Node(5, Node(8, Node(10), Node(11)),
                    Node(4, Node(2, Node(1)), Node(6)))
        self.assertEqual(largest_bst(root), 3)

        # No subtree is a BST
        root = Node(5, Node(6, Node(9), Node(5)), Node(4, Node(6), Node(2)))
        self.assertEqual(largest_bst(root),
                         1)  # Any leaf is a BST by definition

        # Root with no children
        root = Node(1)
        self.assertEqual(largest_bst(root), 1)

        # Root is 'None'
        root = None
        self.assertEqual(largest_bst(root), 0)
Esempio n. 17
0
    def test_is_bst(self):
        root = Node(5, Node(1), Node(4, Node(3), Node(6)))
        self.assertFalse(is_bst(root))

        root = Node(5, Node(3, Node(2), Node(4)), Node(7, Node(6), Node(8)))
        self.assertTrue(is_bst(root))

        root = Node(0)
        self.assertTrue(is_bst(root))

        root = Node(2, Node(1))
        self.assertTrue(is_bst(root))

        root = Node(2, right=Node(3))
        self.assertTrue(is_bst(root))