Esempio n. 1
0
def multiProc():
    def f(indata, q):
        indata = indata[:, 0]
        indata = librosa.core.resample(indata, 44100, 16000)
        fs = 16000
        nfft = 512
        n_fft = 128
        _, _, spectrogram = sp.signal.stft(indata,
                                           fs=fs,
                                           nfft=n_fft,
                                           nperseg=n_fft)
        q.put(np.abs(spectrogram))

    def clean(processes):
        for i in range(len(processes)):
            if processes and not processes[0].is_alive():
                p = processes.pop(0)
                p.terminate()
        return processes

    try:
        import sounddevice as sd
        q = Queue()
        processes = []
        plt.ion()
        callback_status = sd.CallbackFlags()

        def callback(indata, outdata, frames, time, status):
            global callback_status
            #callback_status |= status
            p = Process(target=f, args=(
                indata,
                q,
            ))
            processes.append(p)
            p.start()
            plt.imshow(q.get())
            plt.show()
            plt.pause(0.0001)
            clean(processes)

        with sd.Stream(callback=callback,
                       channels=1,
                       samplerate=44100,
                       blocksize=44100):
            print("#" * 80)
            print("press Return to quit")
            print("#" * 80)
            input()

        if callback_status:
            logging.warning(str(callback_status))
    except BaseException as e:
        # This avoids printing the traceback, especially if Ctrl-C is used.
        raise SystemExit(str(e))
Esempio n. 2
0
 def __init__(self, device, attack, release):
     if attack <= 0 or release <= 0:
         raise ValueError("attack and release have to be positive "
                          "and different from zero")
     self._stream = sd.OutputStream(device=device,
                                    callback=self._callback,
                                    channels=2)
     self._attack = np.round(_seconds2samples(attack / 1000)).astype(int)
     self._release = np.round(_seconds2samples(release / 1000)).astype(int)
     self._last_gain = 0
     self._channel = 0
     self._index = 0
     target_gain = 0
     slope = 0
     freq = 0
     self._callback_parameters = target_gain, slope, freq
     self._target_gain = target_gain
     self._callback_status = sd.CallbackFlags()
     self._stream.start()
Esempio n. 3
0
    def __init__(self, args):

        def audio_callback(indata, outdata, frames, time, status):
                '''Called by audio stream for each new buffer.'''
                indataQ.append(indata[::, LEFT])
                if self.out_enable:
                    outdata[:, LEFT] = self.out_sig
                else:
                    outdata.fill(0)
                self.cumulated_status |= status
                return None

        self.args = args
        self.out_enable = False

        sd.default.device = [args.input_dev, args.output_dev]
        sd.default.channels = 2
        sd.default.dtype = None
        sd.default.latency = None
        sd.default.samplerate = args.sample_rate
        sd.default.blocksize = args.buff_size
        sd.default.clip_off = True
        sd.default.dither_off = args.dither
        sd.default.never_drop_input = None
        sd.default.prime_output_buffers_using_stream_callback = None

        # Checks will throw errors for invalid settings.
        sd.check_input_settings()
        sd.check_output_settings()

        # Will store sounddevice status flags on buffer under/overflows, etc.
        self.cumulated_status = sd.CallbackFlags()
        # Will store data to write to output buffer.
        self.out_sig = None

        # Create the stream
        self.audio_stream = sd.Stream(callback=audio_callback)
Esempio n. 4
0
# latency (float): latency in seconds
latency = None

sendIp = ("18.85.25.231", 12341)
# sendIp=("26.67.222.83", 12341)

# for d in devices: print(d['name'], d['max_input_channels'], d['max_output_channels'])

input_device = 3
output_device = 7

print('input:  ' + devices[input_device]['name'])
print('output: ' + devices[output_device]['name'])

try:
    cumulated_status = sd.CallbackFlags()
    size = 128 * 1024 * 120 * 16
    print('duration in minutes: {0}'.format(float(size) / samplerate / 60))
    osc_io = StretchIO(sendIp)
    input_buffer = AnnotatedRing(size / 512, 512)
    stretch_group = StretchGroup(input_buffer, osc_io)
    shape = (0, 0)
    frames_elapsed = 0
    samples_elapsed = 0
    previous_energy = 0
    last_activation = -99999999999

    def button_callback(button, state):
        # touchOSC buttons index at one
        if button > len(stretch_group.stretches_list):
            return
Esempio n. 5
0
    def callback(indata, outdata, samples, time, status):
        nonlocal v

        try:
            if status:
                print(status)
            status_remaining = status

            # Store Recording
            # ===============

            if v.rec_position + samples > len(v.rec_pcm):
                raise Exception(
                    "Insufficient space in recording buffer.  We've taken too long."
                )
            v.rec_pcm[v.rec_position:v.rec_position + samples] = indata[:]
            v.rec_position += samples

            # Analysis
            # ========

            assert v.rec_pcm is v.fft_analyser._pcm
            analyses = v.fft_analyser.run(v.rec_position)
            #print(tones_level_list)

            # # Clear the first half second of the recording buffer if we've
            # # recorded more than one second
            # if v.rec_position > v.samples_per_second:
            #     seconds_to_clear = 0.5 # seconds
            #     samples_to_clear = int(seconds_to_clear * v.samples_per_second)
            #     v.rec_pcm = numpy.roll(v.rec_pcm, -samples_to_clear, axis=0)
            #     v.rec_position -= samples_to_clear
            #     v.fft_analyser._pos -= samples_to_clear

            # Transitions
            # ===========

            previous_state = v.process_state

            if v.process_state == ProcessState.RESET:
                v.process_state = ProcessState.WARMUP_STREAM

            elif v.process_state == ProcessState.WARMUP_STREAM:
                if v.warmup_stream_start_time is not None:
                    if time.currentTime - v.warmup_stream_start_time > v.warmup_stream_duration:
                        v.process_state = ProcessState.MEASURE_SILENCE

            elif v.process_state == ProcessState.MEASURE_SILENCE:
                if v.silence_mean is not None and \
                   v.silence_sd is not None:
                    if any(v.silence_mean < v.silence_mean_threshold):
                        raise Exception(
                            "Implausibly low mean level detected for silence; aborting."
                        )
                        v.process_state = ProcessState.ABORTED
                    elif any(v.silence_sd < v.silence_sd_threshold):
                        raise Exception(
                            "Implausibly low standard deviation detected for silence; aborting."
                        )
                        v.process_state = ProcessState.ABORTED
                    else:
                        # No reason not to continue
                        v.process_state = ProcessState.FADEIN_TONE0
                        v.non_silence_abort_start_time = time.currentTime
                        print(
                            "About to play tone.  Please increase system volume until the tone is detected."
                        )

                if time.currentTime - v.state_start_time > v.silence_max_time_in_state:
                    raise Exception("Spent too long listening to silence.")
                    v.process_state = ProcessState.ABORTED

            elif v.process_state == ProcessState.FADEIN_TONE0:
                v.process_state = ProcessState.DETECT_TONE0

            elif v.process_state == ProcessState.DETECT_TONE0:
                if v.non_silence_detected:
                    v.process_state = ProcessState.MEASURE_TONE0
                    print(
                        "Base tone detected.  Please do not adjust system volume nor position"
                    )
                    print("of microphone or speakers")

                if time.currentTime - v.state_start_time > v.non_silence_max_time_in_state:
                    raise Exception(
                        "Spent too long listening for non-silence.")
                    v.process_state = ProcessState.ABORTED

            elif v.process_state == ProcessState.MEASURE_TONE0:
                if v.tone0_mean is not None and \
                   v.tone0_sd is not None:
                    v.process_state = ProcessState.FADEOUT_TONE0

            elif v.process_state == ProcessState.FADEOUT_TONE0:
                v.process_state = ProcessState.DETECT_SILENCE

            elif v.process_state == ProcessState.DETECT_SILENCE:
                if v.detect_silence_detected:
                    print("Moving to MEASURE_SILENCE2")
                    v.process_state = ProcessState.MEASURE_SILENCE2

                if time.currentTime - v.state_start_time > v.detect_silence_max_time_in_state:
                    raise Exception(
                        "Spent too long listening for silence (the second time)."
                    )
                    v.process_state = ProcessState.ABORTED

            elif v.process_state == ProcessState.MEASURE_SILENCE2:
                if v.silence_abs_pcm_mean is not None and \
                   v.silence_abs_pcm_sd is not None:
                    v.process_state = ProcessState.COMPLETED

            elif v.process_state == ProcessState.COMPLETING:
                v.process_state = ProcessState.COMPLETED

            elif v.process_state == ProcessState.COMPLETED:
                pass

            # Set state start time
            if previous_state != v.process_state:
                v.state_start_time = time.currentTime

            # States
            # ======

            if v.process_state == ProcessState.RESET:
                if status:
                    print(status, "in RESET state; ignoring")
                    # Clear all bits
                    status_remaining = sd.CallbackFlags()

                # It's a requirement that outdata is always actively
                # filled
                outdata.fill(0)

            elif v.process_state == ProcessState.WARMUP_STREAM:
                # It's a requirement that outdata is always actively
                # filled
                outdata.fill(0)

                if status:
                    print(status, "in WARMUP_STREAM state; ignoring")
                    # Clear all bits
                    status_remaining = sd.CallbackFlags()
                    # Reset timer
                    v.warmup_stream_start_time = None
                else:
                    if v.warmup_stream_start_time == None:
                        print("Starting warmup timer")
                        v.warmup_stream_start_time = time.currentTime

            elif v.process_state == ProcessState.MEASURE_SILENCE:
                # It's a requirement that outdata is always actively
                # filled
                outdata.fill(0)

                # Ensure that we've got valid data
                if status.input_underflow:
                    print(indata)
                    assert numpy.all(indata[:] == 0)
                    print(status, "in MEASURE_SILENCE state; ignoring")
                    # Clear input underflow bit
                    status_remaining.input_underflow = False

                # Check if the sample is acceptable:
                for sample_analysis in analyses:
                    tones_level = sample_analysis["freq_levels"]
                    # Check if levels are aceptable
                    if tones_level is not None and all(tones_level > 0):
                        # Check if we've listened to enough silence
                        if len(v.silence_levels) < v.silence_threshold_samples:
                            # Record this level
                            v.silence_levels.append(tones_level)
                        else:
                            # We've now collected enough sample levels;
                            # calculate the mean and standard deviation of the
                            # samples taken.
                            v.silence_mean = numpy.mean(v.silence_levels,
                                                        axis=0)
                            v.silence_sd = numpy.std(v.silence_levels, axis=0)
                            print("silence_mean:", v.silence_mean)
                            print("silence_sd:", v.silence_sd)
                            print("sample size of silence:",
                                  len(v.silence_levels))

                            # We don't need to process the remaining levels
                            break
                    else:
                        print(
                            "Sample was either None or the levels were negative.  Sample ignored."
                        )

            elif v.process_state == ProcessState.FADEIN_TONE0:
                print("Fading in tone #0")
                v.tones[0].fadein(v.fadein_tone0_duration)
                v.tones[0].output(outdata)

            elif v.process_state == ProcessState.DETECT_TONE0:
                if status.input_underflow:
                    print(status, "in DETECT_TONE0 state; ignoring")
                    status_remaining.input_underflow = False

                # Continue playing tone #0
                v.tones[0].output(outdata)

                for analysis in analyses:
                    tones_level = analysis["freq_levels"]

                    # Calculate the number of standard deviations from silence
                    num_sd = (tones_level[0] -
                              v.silence_mean[0]) / v.silence_sd[0]

                    if abs(num_sd) > v.non_silence_threshold_num_sd:
                        # We've measured non-silence
                        v.non_silence_samples += 1
                        if v.non_silence_samples > v.non_silence_threshold_samples:
                            print("Non-silence detected")
                            v.non_silence_detected = True
                    else:
                        # Reset counter
                        v.non_silence_samples = 0

            elif v.process_state == ProcessState.MEASURE_TONE0:
                # Continue playing tone #0
                v.tones[0].output(outdata)

                # TODO: Should we check that we've got non-silence?

                for analysis in analyses:
                    tones_level = analysis["freq_levels"]
                    abs_pcm_mean = analysis["abs_pcm_mean"]

                    # Save the frequency levels because we assume we're
                    # hearing tone #0
                    v.tone0_levels.append(tones_level)
                    v.tone0_abs_pcm_means.append(abs_pcm_mean)

                    if len(v.tone0_levels) >= v.tone0_threshold_samples:
                        # We've now collected enough samples
                        v.tone0_mean = numpy.mean(v.tone0_levels, axis=0)
                        v.tone0_sd = numpy.std(v.tone0_levels, axis=0)
                        print("tone0_mean:", v.tone0_mean)
                        print("tone0_sd:", v.tone0_sd)
                        print("tone0 number of samples:", len(v.tone0_levels))

                        # Also calculate the PCM levels
                        v.tone0_abs_pcm_mean = numpy.mean(
                            v.tone0_abs_pcm_means)
                        v.tone0_abs_pcm_sd = numpy.std(v.tone0_abs_pcm_means)
                        print("tone0_abs_pcm_mean:", v.tone0_abs_pcm_mean)
                        print("tone0_abs_pcm_sd:", v.tone0_abs_pcm_sd)
                        print("number of samples:", len(v.tone0_abs_pcm_means))

                        # We don't need to process the remaining samples
                        break

            elif v.process_state == ProcessState.FADEOUT_TONE0:
                # Fadeout tone #0 over the length of the frame
                fadeout_duration = samples / v.samples_per_second
                print("FADING OUT TONE0 over {:f} seconds".format(
                    fadeout_duration))
                v.tones[0].fadeout(fadeout_duration)
                v.tones[0].output(outdata)

            elif v.process_state == ProcessState.DETECT_SILENCE:
                # Actively fill the output buffer
                outdata.fill(0)

                for analysis in analyses:
                    tones_level = analysis["freq_levels"]

                    # Calculate the number of standard deviations from tone0
                    num_sd = (tones_level - v.tone0_mean) / v.tone0_sd
                    #print(num_sd)

                    if all(abs(num_sd) > v.detect_silence_threshold_num_sd):
                        v.detect_silence_samples += 1
                        if v.detect_silence_samples >= v.detect_silence_threshold_samples:
                            print("Silence detected")
                            v.detect_silence_detected = True

                            # Clear the initial measurement of silence
                            v.silence_levels = []
                    else:
                        # Reset timer
                        #print("Resetting silence counter")
                        v.detect_silence_samples = 0

            elif v.process_state == ProcessState.MEASURE_SILENCE2:
                # Actively fill the output buffer
                outdata.fill(0)

                for analysis in analyses:
                    tones_level = analysis["freq_levels"]
                    abs_pcm_mean = analysis["abs_pcm_mean"]

                    # Save the levels because we assume we're hearing silence
                    v.silence_levels.append(tones_level)
                    v.measure_silence2_abs_pcm_means.append(abs_pcm_mean)
                    v.measure_silence2_samples += 1

                    # Check if we've seen sufficient samples
                    if v.measure_silence2_samples >= v.measure_silence2_threshold_samples:
                        # Calculate the mean and std dev
                        v.silence_abs_pcm_mean = numpy.mean(
                            v.measure_silence2_abs_pcm_means)
                        v.silence_abs_pcm_sd = numpy.std(
                            v.measure_silence2_abs_pcm_means)
                        print("silence_abs_pcm_mean:", v.silence_abs_pcm_mean)
                        print("silence_abs_pcm_sd:", v.silence_abs_pcm_sd)
                        print("number of samples:",
                              len(v.measure_silence2_abs_pcm_means))

                        v.silence_mean = numpy.mean(v.silence_levels, axis=0)
                        v.silence_sd = numpy.std(v.silence_levels, axis=0)
                        print("silence_mean:", v.silence_mean)
                        print("silence_sd:", v.silence_sd)
                        print("number of samples:", len(v.silence_levels))

                        # We do not need to process the remaining samples
                        break

            elif v.process_state == ProcessState.COMPLETED:
                # Actively fill the output buffer
                outdata.fill(0)
                print("Successfully completed measuring levels")
                raise sd.CallbackStop

            elif v.process_state == ProcessState.ABORTED:
                outdata.fill(0)
                print("Aborting measuring levels: " + v.error)
                raise sd.CallbackAbort

            # DEBUG
            # Save outdata for analysis
            v.out_pcm[v.out_pcm_pos:v.out_pcm_pos + samples] = outdata[:]
            v.out_pcm_pos += samples
            if v.out_pcm_pos > len(v.out_pcm):
                v.error = "Buffer for PCM of output is full"
                raise sd.CallbackAbort

            if stream.cpu_load > 0.25:
                print("High CPU usage:", round(stream.cpu_load, 3))

            # Handle overflow/underflow errors
            if status_remaining:
                print(status_remaining, "in", v.process_state, "; aborting")
                raise Exception(
                    "Status indicated an unacceptable issue with audio")

        except sd.CallbackAbort:
            raise

        except sd.CallbackStop:
            raise

        except Exception as exception:
            v.error = "Exception raised within callback: " + str(exception)
            v.exception = exception
            raise sd.CallbackAbort
Esempio n. 6
0
    if args.list_devices:
        print(sd.query_devices())
        print('test: ', args.device, sd.query_devices(sd.default.device['input']))
        parser.exit()

    if args.device is None:
        args.device = sd.default.device['input']
    samplerate = sd.query_devices(args.device)['default_samplerate']
    # print("samplerate: ", samplerate)

    delta_f = (high - low) / (args.columns - 1)
    fftsize = np.ceil(samplerate / delta_f).astype(int)
    low_bin = int(np.floor(low / delta_f))

    statuses = sd.CallbackFlags()

    data =

    def callback(indata, frames, time, status):
        global statuses
        statuses |= status
        if any(indata):
            magnitude = np.abs(np.fft.rfft(indata[:, 0], n=fftsize))
            magnitude *= args.gain / fftsize
            # print( "low: high = ", low_bin, args.columns)
            print(indata, len(indata))
            line = (gradient[int(np.clip(x, 0, 1) * (len(gradient) - 1))]
                    for x in magnitude[low_bin:(low_bin + args.columns)])
            # print(*line, sep='', end='\x1b[0m\n', flush=True)
        else:
Esempio n. 7
0
    def start(self,
              thres=0,
              timeout=5,
              process=None,
              startpadding=10,
              endpadding=20,
              fullfilename=None,
              partfilename=None):

        if process != None:
            if not callable(process):
                raise TypeError('process must be function not called.')
            else:
                self.fnc = process

        self.startpadding = startpadding
        self.endpadding = endpadding
        self.fullfilename = fullfilename
        self.partfilename = partfilename
        self.starttime = time.time()
        self.avg_rms = []
        self.recording = False
        self.stopper = False
        self.start_count = 0
        self.end_count = 0
        self.thres = thres
        global cumulated_status
        try:
            cumulated_status = sd.CallbackFlags()

            with sd.InputStream(device=None,
                                channels=1,
                                callback=self.callback,
                                blocksize=int(self.samplerate * self.DURATION /
                                              1000),
                                samplerate=self.samplerate):
                while True:
                    if self.stopper: break
                    self.endtime = time.time()
                    if timeout > 0:
                        if (self.endtime - self.starttime) >= timeout:
                            if process != None:
                                self.pred_process()
                                if partfilename != None:
                                    self.write_to_file(self, partfilename)
                            break

                    #await asyncio.sleep(0.1)
                    #time.sleep(0.1)
                    #break
                if self.fullfilename != None:
                    soundfile.write(self.fullfilename, self.audiodata,
                                    int(self.samplerate))

            if cumulated_status:
                logging.warning(str(cumulated_status))

        except Exception as e:
            logging.info("=====================CRASH AT THIS=listen.py start")
            logging.debug(e)
            print(e)
Esempio n. 8
0
parser.add_argument("-o", "--output-device", type=int, help="output device ID")
parser.add_argument("-c",
                    "--channels",
                    type=int,
                    default=2,
                    help="number of channels")
parser.add_argument("-t", "--dtype", help="audio data type")
parser.add_argument("-s", "--samplerate", type=float, help="sampling rate")
parser.add_argument("-b", "--blocksize", type=int, help="block size")
parser.add_argument("-l", "--latency", type=float, help="latency in seconds")
args = parser.parse_args()

try:
    import sounddevice as sd

    callback_status = sd.CallbackFlags()

    def callback(indata, outdata, frames, time, status):
        global callback_status
        callback_status |= status
        outdata[:] = indata

    with sd.Stream(device=(args.input_device, args.output_device),
                   samplerate=args.samplerate,
                   blocksize=args.blocksize,
                   dtype=args.dtype,
                   latency=args.latency,
                   channels=args.channels,
                   callback=callback):
        print("#" * 80)
        print("press Return to quit")
Esempio n. 9
0
def multiProc():
    model_dir = '/home/felix/rirnet/foorir_felix/models'
    model = Model(model_dir)

    def f(indata, q, model):
        indata = indata[:, 0]
        fs = 16384
        indata = librosa.core.resample(indata, 44100, fs)
        n_fft = 128
        _, _, spectrogram = sp.signal.stft(indata,
                                           fs=fs,
                                           nfft=n_fft,
                                           nperseg=n_fft)
        spectrogram = spectrogram[:, :225]
        rir = model.forward(spectrogram)
        q.put(rir)
        print('left result')

    def clean(processes):
        for i in range(len(processes)):
            if processes and not processes[0].is_alive():
                p = processes.pop(0)
                p.terminate()
        return processes

    try:
        import sounddevice as sd
        q = Queue()
        q.put([[0], [0]])
        processes = []
        plt.ion()
        callback_status = sd.CallbackFlags()

        def callback(indata, outdata, frames, time, status):
            rir = q.get()
            print(rir)
            plt.imshow(rir)
            plt.draw()
            plt.pause(0.01)
            global callback_status
            p = Process(target=f, args=(
                indata,
                q,
                model,
            ))
            processes.append(p)
            p.start()
            clean(processes)

        with sd.Stream(callback=callback,
                       channels=1,
                       samplerate=44100,
                       blocksize=44100):
            print("#" * 80)
            print("press Return to quit")
            print("#" * 80)
            input()

        if callback_status:
            logging.warning(str(callback_status))
    except BaseException as e:
        # This avoids printing the traceback, especially if Ctrl-C is used.
        raise SystemExit(str(e))
Esempio n. 10
0
def record(length=1, reclength=1, filename=None, thres=0):
    """ 
    Merekam suara secara stream dan metode callback
    """

    global cumulated_status, end_count, start_count, recording, magnitudo, audiodata, predicting, i_quit, listening
    predicting = False
    listening = True
    end_count = False
    start_count = 0
    recording = False
    magnitudo = []
    audiodata = []
    try:
        import sounddevice as sd

        #samplerate = sd.query_devices(args.device, 'input')['default_samplerate']
        samplerate = 16000.0

        delta_f = (high - low) / screenwidth
        fftsize = np.ceil(samplerate / delta_f).astype(int)
        low_bin = int(np.floor(low / delta_f))

        cumulated_status = sd.CallbackFlags()

        def callback(indata, frames, time, status):
            global cumulated_status, audiodata, magnitudo, end_count, start_count, recording, smodel, predicting, i_quit

            cumulated_status |= status
            if any(indata):
                magnitude = np.abs(np.fft.rfft(indata[:, 0], n=fftsize))
                magnitude *= gain / fftsize

                rms = librosa.feature.rmse(S=indata)
                rms = int(rms * 32768)
                start_count += 1
                if rms >= thres:
                    if not recording:  #and not end_count
                        #print("Start record")
                        recording = True
                        start_count = 0

                if recording:
                    audiodata.extend(itertools.chain(indata.tolist()))
                    magnitudo.append(magnitude)
                    if start_count == int(samplerate /
                                          (samplerate * DURATION / 1000)):
                        #print("End record")
                        start_count = 0
                        end_count = True
                        recording = False
                        try:
                            if not predicting:
                                print("Predict")
                                soundfile.write("temp.wav", audiodata, 16000)
                                predict("temp.wav", model=smodel)
                                predicting = False
                            pass
                        except:
                            pass
                        audiodata = []

        with sd.InputStream(device=None,
                            channels=1,
                            callback=callback,
                            blocksize=int(samplerate * DURATION / 1000),
                            samplerate=samplerate):
            while True:
                #response = input()
                #if response in ('', 'q', 'Q'):
                if listening == False:
                    #time.sleep(length)
                    break
            if filename != None: soundfile.write(filename, audiodata, 16000)

        if cumulated_status:
            logging.warning(str(cumulated_status))
    except Exception as e:
        print(e)