def initialize_state(self,
                         hidden,
                         feature=None,
                         attn_memory=None,
                         attn_mask=None,
                         memory_lengths=None,
                         knowledge=None):

        if self.feature_size is not None:
            assert feature is not None

        if self.attn_mode is not None:
            assert attn_memory is not None

        if memory_lengths is not None and attn_mask is None:
            max_len = attn_memory.size(1)
            attn_mask = sequence_mask(memory_lengths, max_len).eq(0)

        init_state = DecoderState(
            hidden=hidden,
            feature=feature,
            attn_memory=attn_memory,
            attn_mask=attn_mask,
            knowledge=knowledge,
        )
        return init_state
Esempio n. 2
0
    def initialize_state(
        self,
        hidden,
        attn_memory=None,
        attn_mask=None,
        memory_lengths=None,
        guide_score=None,
        topic_feature=None,
    ):
        """
        initialize_state
        """
        if self.attn_mode is not None:
            assert attn_memory is not None

        if memory_lengths is not None and attn_mask is None:
            max_len = attn_memory.size(1)
            attn_mask = sequence_mask(memory_lengths, max_len).eq(0)

        init_state = DecoderState(
            hidden=hidden,
            attn_memory=attn_memory,
            attn_mask=attn_mask,
            topic_feature=topic_feature.unsqueeze(1),
            # bridge_memory=bridge_memory,
            guide_score=guide_score,
            state_vector=None,
        )
        return init_state
Esempio n. 3
0
    def initialize_state(self,
                         hidden,
                         fact,
                         hist,
                         attn_fact=None,
                         attn_hist=None,
                         hist_mask=None,
                         fact_mask=None,
                         fact_lengths=None,
                         hist_lengths=None):
        """
        initialize_state
        """
        if self.attn_mode is not None:
            assert attn_fact is not None
            assert attn_hist is not None

        if hist_lengths is not None and hist_mask is None:
            max_len = attn_hist.size(1)
            hist_mask = sequence_mask(hist_lengths, max_len).eq(0)

        if fact_lengths is not None and fact_mask is None:
            sent_len = torch.max(fact_lengths)
            fact_mask = sequence_mask(fact_lengths, sent_len).eq(0).view(
                fact_lengths.size(0), -1)

        init_state = DecoderState(hidden=hidden,
                                  fact=fact,
                                  hist=hist,
                                  attn_hist=attn_hist,
                                  attn_fact=attn_fact,
                                  hist_mask=hist_mask,
                                  fact_mask=fact_mask)
        return init_state
Esempio n. 4
0
    def initialize_state(
        self,
        hidden,
        feature=None,
        attn_memory=None,
        attn_mask=None,
        memory_lengths=None,
        cue_attn_mask=None,
        cue_lengths=None,
        cue_enc_outputs=None,
        task_id=1,
    ):
        """
        initialize_state
        """
        if self.feature_size is not None:
            assert feature is not None

        if self.attn_mode is not None:
            assert attn_memory is not None

        if memory_lengths is not None and attn_mask is None:
            if task_id == 1:
                max_len = attn_memory.size(
                    1
                )  # 第二阶段attn_memory(batch_size, src_len, 2*rnn_hidden_size)
            else:
                max_len = attn_memory.size(
                    2
                )  # 第一阶段attn_memory(batch_size, sent_num, num_enc_inputs, 2*rnn_hidden_size)
            attn_mask = sequence_mask(memory_lengths, max_len).eq(
                0
            )  # 第一阶段attn_mask(batch_size, sent_num, num_enc_inputs) 第二阶段attn_mask(batch_size, num_enc_inputs)

        if cue_lengths is not None and cue_attn_mask is None:
            cue_max_len = cue_enc_outputs.size(
                1)  # cue_enc_outputs(batch_size, cue_len, 2*rnn_hidden_size)
            cue_attn_mask = sequence_mask(cue_lengths, cue_max_len).eq(
                0)  # cue_attn_mask(batch_size,max_len-2)

        init_state = DecoderState(hidden=hidden,
                                  feature=feature,
                                  attn_memory=attn_memory,
                                  attn_mask=attn_mask,
                                  cue_attn_mask=cue_attn_mask,
                                  cue_enc_outputs=cue_enc_outputs,
                                  cue_lengths=cue_lengths,
                                  memory_lengths=memory_lengths,
                                  task_id=task_id)
        return init_state
Esempio n. 5
0
    def initialize_state(self,
                         hidden,
                         feature=None,
                         src_enc_outputs=None,
                         src_inputs=None,
                         src_lengths=None,
                         src_mask=None,
                         cue_enc_outputs=None,
                         cue_inputs=None,
                         cue_lengths=None,
                         cue_mask=None,
                         selected_cue_memory=None,
                         selected_cue_length=None,
                         selected_cue_mask=None,
                         knowledge=None):
        """
        initialize_state
        """
        if self.feature_size is not None:
            assert feature is not None

        if self.attn_mode is not None:
            assert src_enc_outputs is not None

        if src_lengths is not None and src_mask is None:
            max_len = src_enc_outputs.size(1)
            src_mask = sequence_mask(src_lengths, max_len).eq(0)

        if selected_cue_length is not None and selected_cue_mask is None:
            max_len = selected_cue_memory.size(1)
            selected_cue_mask = sequence_mask(selected_cue_length,
                                              max_len).eq(0)

        if cue_lengths is not None and cue_mask is None:
            max_len = cue_enc_outputs.size(2)
            cue_mask = sequence_mask(cue_lengths, max_len).eq(0)

        init_state = DecoderState(hidden=hidden,
                                  feature=feature,
                                  src_enc_outputs=src_enc_outputs,
                                  src_inputs=src_inputs,
                                  src_mask=src_mask,
                                  cue_enc_outputs=cue_enc_outputs,
                                  cue_inputs=cue_inputs,
                                  cue_mask=cue_mask,
                                  selected_cue_memory=selected_cue_memory,
                                  selected_cue_mask=selected_cue_mask,
                                  knowledge=knowledge)
        return init_state
Esempio n. 6
0
    def initialize_state(self,
                         hidden,
                         attn_memory=None,
                         input_feed=None,
                         mask=None):
        """
        initialize_state
        """

        if self.attn_mode is not None:
            assert attn_memory is not None

        init_state = DecoderState(hidden=hidden,
                                  attn_memory=attn_memory,
                                  input_feed=input_feed,
                                  mask=mask)
        return init_state
Esempio n. 7
0
    def initialize_state(self,
                         hidden,
                         cue_inputs=None,
                         attn_memory=None,
                         attn_mask=None,
                         memory_lengths=None):
        """
        initialize_state
        """
        if self.attn_mode is not None:
            assert attn_memory is not None

        if memory_lengths is not None and attn_mask is None:
            max_len = attn_memory.size(1)
            attn_mask = sequence_mask(memory_lengths, max_len).eq(0)

        init_state = DecoderState(
            hidden=hidden,
            cue_inputs=cue_inputs,
            attn_memory=attn_memory,
            attn_mask=attn_mask,
        )
        return init_state