Esempio n. 1
0
def main():

    extensions = ["BMP", "bmp", "PNG", "png", "JPG", "jpg", "JPEG", "jpeg"]

    util.refresh_directory(PACK_PATH+"/images")

    print("Enter the path")
    # usr_path = input(">> ")
    usr_path = "/media/yeonghyeon/Toshiba/lung/datasets/20171204"

    if(util.check_path(usr_path)):
        files = util.get_filelist(directory=usr_path, extensions=extensions)
        for fi in files:
            print(fi)

            tmp_sub, tmp_file = util.get_dir_and_file_name(path=fi)

            if(not(util.check_path(path=PACK_PATH+"/images/"+str(tmp_file)+"/"))):
                util.make_path(path=PACK_PATH+"/images/"+str(tmp_file)+"/")

            image = cvf.load_image(path=fi)

            if(image.shape[0] > image.shape[1]): # height > width
                resized = cvf.resizing(image=image, width=int(500*(image.shape[1]/image.shape[0])), height=500)
            else:
                resized = cvf.resizing(image=image, width=500, height=int(500*(image.shape[0]/image.shape[1])))
            zeropad = cvf.zero_padding(image=resized, height=500, width=500)
            print(image.shape)
            print(resized.shape)
            print(zeropad.shape)
            cvf.save_image(path=PACK_PATH+"/images/", filename=str(tmp_file)+".png", image=zeropad)
    else:
        print("Invalid path :"+usr_path)
def make_dataset(category=None,
                 dirlist=None,
                 height=32,
                 width=32,
                 channel=3,
                 extensions=None):

    print("\n** Make " + category)

    class_len = len(dirlist)
    io_mode = "w"
    label_number = 0

    if (not (util.check_path(path=PACK_PATH + "/images/"))):
        util.make_path(path=PACK_PATH + "/images/")
    util.refresh_directory(PACK_PATH + "/images/dataset/")

    channel = 1
    for di in dirlist:
        tmp_path = PACK_PATH + "/dataset/" + category + "/" + di
        fi_list = util.get_filelist(directory=tmp_path, extensions=extensions)

        cnt = 0
        for fi in fi_list:
            tmp_sub, tmp_file = util.get_dir_and_file_name(path=fi)
            cnt += 1

            image = cv2.imread(fi)
            resized_image = cv2.resize(image, (width, height))

            cvf.save_image(path=PACK_PATH + "/images/dataset/",
                           filename=str(label_number) + "_" + str(cnt) +
                           ".png",
                           image=resized_image)

            if (channel == 1):
                resized_image = cv2.cvtColor(resized_image, cv2.COLOR_BGR2GRAY)
                height, width = resized_image.shape
            else:
                height, width, channel = resized_image.shape
            resized_image = resized_image.reshape((height * width * channel))

            np.save(file=tmp_path + "/" + tmp_file, arr=resized_image)

        label_number += 1

    if (os.path.exists(PACK_PATH + "/" + category)):  # management storage
        shutil.rmtree(PACK_PATH + "/" + category)

    f = open(PACK_PATH + "/dataset/format.txt", "w")
    f.write(str(label_number))
    f.write("\n")
    f.write(str(height * width * channel))
    f.write("\n")
    f.write(str(height))
    f.write("\n")
    f.write(str(width))
    f.write("\n")
    f.write(str(channel))
    f.close()
def check():

    print("\n** Check dataset")

    check_path = PACK_PATH + "/dataset"
    in_data = 0
    if (util.check_path(path=check_path)):
        for fi in glob.glob(check_path + "/*"):
            in_data += 1

    if (in_data >= 5):
        return True
    else:
        return False
def main():

    extensions = ["BMP", "bmp", "PNG", "png", "JPG", "jpg", "JPEG", "jpeg"]

    util.refresh_directory(PACK_PATH + "/images")

    print("Enter the path")
    # usr_path = input(">> ")
    usr_path = "/home/yeonghyeon/Desktop/images/post_processing_1113"

    if (util.check_path(usr_path)):
        files = util.get_filelist(directory=usr_path, extensions=extensions)
        for fi in files:
            print(fi)
            extract_segments(filename=fi)

    else:
        print("Invalid path :" + usr_path)
Esempio n. 5
0
def image_histogram_equalization(image, number_bins=256):
    # from http://www.janeriksolem.net/2009/06/histogram-equalization-with-python-and.html

    # get image histogram
    image_histogram, bins = np.histogram(image.flatten(), number_bins, normed=True)
    cdf = image_histogram.cumsum() # cumulative distribution function
    cdf = (number_bins-1) * cdf / cdf[-1] # normalize

    # use linear interpolation of cdf to find new pixel values
    image_equalized = np.interp(image.flatten(), bins[:-1], cdf)

    return image_equalized.reshape(image.shape), cdf

print("\nEnter the path")
usr_path = input(">> ")
if(util.check_path(usr_path)):
    files = util.get_filelist(directory=usr_path, extensions=extensions)
    for fi in files:
        print("Convert: "+str(fi))

        tmp_name = fi.split("/")
        tmp_file = tmp_name[len(tmp_name)-1].split(".")[0]

        dir_sp = fi.split("/")
        main_dir = ""
        for ds in dir_sp[:len(dir_sp)-1]:
            main_dir += ds
            main_dir += "/"

        dicom_data = dicom.read_file(fi)
        try:
def extract_segments(filename):

    tmp_sub, tmp_file = util.get_dir_and_file_name(path=filename)

    if (not (util.check_path(path=PACK_PATH + "/images/" + str(tmp_file) +
                             "/"))):
        util.make_path(path=PACK_PATH + "/images/" + str(tmp_file) + "/")

    origin = cvf.load_image(path=filename)
    gray = cvf.rgb2gray(rgb=origin)
    resized = cvf.resizing(image=gray, width=500)
    cvf.save_image(path=PACK_PATH + "/images/" + str(tmp_file) + "/",
                   filename=str(tmp_file) + ".png",
                   image=resized)

    mulmul = resized.copy()
    for i in range(20):
        ret, thresh = cv2.threshold(mulmul,
                                    np.average(mulmul) * 0.3, 255,
                                    cv2.THRESH_BINARY)
        cvf.save_image(path=PACK_PATH + "/images/" + str(tmp_file) + "/",
                       filename=str(tmp_file) + "_thresh1.png",
                       image=thresh)

        mulmul = cvf.normalizing(binary_img=resized * (thresh / 255))

    movavg = cvf.moving_avg_filter(binary_img=mulmul, k_size=10)
    adap = cvf.adaptiveThresholding(binary_img=movavg,
                                    neighbor=111,
                                    blur=False,
                                    blur_size=3)
    cvf.save_image(path=PACK_PATH + "/images/" + str(tmp_file) + "/",
                   filename=str(tmp_file) + "_adap.png",
                   image=255 - adap)

    result = resized * ((255 - adap) / 255)
    cvf.save_image(path=PACK_PATH + "/images/" + str(tmp_file) + "/",
                   filename=str(tmp_file) + "_result1.png",
                   image=result)

    movavg = cvf.moving_avg_filter(binary_img=result, k_size=10)
    cvf.save_image(path=PACK_PATH + "/images/" + str(tmp_file) + "/",
                   filename=str(tmp_file) + "_result2.png",
                   image=movavg)

    ret, thresh = cv2.threshold(movavg,
                                np.average(movavg) * 0.5, 255,
                                cv2.THRESH_BINARY_INV)
    cvf.save_image(path=PACK_PATH + "/images/" + str(tmp_file) + "/",
                   filename=str(tmp_file) + "_thresh2.png",
                   image=thresh)

    contours = cvf.contouring(binary_img=thresh)
    boxes = cvf.contour2box(contours=contours, padding=20)

    resized = cvf.resizing(image=gray, width=500)

    cnt = 0
    for box in boxes:
        x, y, w, h = box

        if ((x > 0) and (y > 0)):
            if ((x + w < resized.shape[1]) and (y + h < resized.shape[0])):

                cvf.save_image(
                    path=PACK_PATH + "/images/" + str(tmp_file) + "/",
                    filename=str(tmp_file) + "_0_" + str(cnt) + ".png",
                    image=thresh[y:y + h, x:x + w])
                pad = cvf.zero_padding(image=thresh[y:y + h, x:x + w],
                                       height=500,
                                       width=500)
                cvf.save_image(
                    path=PACK_PATH + "/images/" + str(tmp_file) + "/",
                    filename=str(tmp_file) + "_1_" + str(cnt) + ".png",
                    image=pad)
                pad2 = cvf.remain_only_biggest(binary_img=pad)
                cvf.save_image(
                    path=PACK_PATH + "/images/" + str(tmp_file) + "/",
                    filename=str(tmp_file) + "_2_" + str(cnt) + ".png",
                    image=pad2)
                pad_res = cvf.zero_padding(image=resized[y:y + h, x:x + w],
                                           height=500,
                                           width=500)
                cvf.save_image(
                    path=PACK_PATH + "/images/" + str(tmp_file) + "/",
                    filename=str(tmp_file) + "_3_" + str(cnt) + ".png",
                    image=pad_res * (pad2 / 255))
                cvf.save_image(
                    path=PACK_PATH + "/images/" + str(tmp_file) + "/",
                    filename=str(tmp_file) + "_4_" + str(cnt) + ".png",
                    image=resized[y:y + h, x:x + w])
                cnt += 1

    for b in boxes:
        x, y, w, h = b

        if ((x > 0) and (y > 0)):
            if ((x + w < resized.shape[1]) and (y + h < resized.shape[0])):
                cv2.rectangle(resized, (x, y), (x + w, y + h), (255, 255, 255),
                              2)
                cv2.rectangle(thresh, (x, y), (x + w, y + h), (255, 255, 255),
                              2)

    # cvf.save_image(path=PACK_PATH+"/images/"+str(tmp_file)+"/", filename="opened.png", image=dilated)
    cvf.save_image(path=PACK_PATH + "/images/" + str(tmp_file) + "/",
                   filename="contour.png",
                   image=thresh)
    cvf.save_image(path=PACK_PATH + "/images/" + str(tmp_file) + "/",
                   filename="resized.png",
                   image=resized)

    cvf.save_image(path=PACK_PATH + "/images/",
                   filename="resized" + str(tmp_file) + ".png",
                   image=resized)
Esempio n. 7
0
def extract_lung(usr_path,
                 extensions=None,
                 height=None,
                 width=None,
                 channel=None,
                 sess=None,
                 x_holder=None,
                 training=None,
                 prediction=None,
                 saver=None):

    if (not (util.check_path(path=PACK_PATH + "/results/"))):
        util.make_path(path=PACK_PATH + "/results/")

    summf = open(PACK_PATH + "/results/summary.csv", "w")
    summf.write("FILENAME")
    summf.write(",")
    summf.write("DETECT")
    summf.write(",")
    summf.write("IOU")
    summf.write("\n")

    files = util.get_filelist(directory=usr_path, extensions=extensions)
    files.sort()
    for filename in files:
        print(filename)

        if (util.check_file(filename=filename)):
            tmp_sub, tmp_file = util.get_dir_and_file_name(path=filename)

            if (not (util.check_path(path=PACK_PATH + "/results/" +
                                     str(tmp_file) + "/"))):
                util.make_path(path=PACK_PATH + "/results/" + str(tmp_file) +
                               "/")

            origin = cvf.load_image(path=filename)
            try:
                gray = cvf.rgb2gray(rgb=origin)
            except:  # if origin image is grayscale
                gray = origin
            resized = cvf.resizing(image=gray, width=500)
            cvf.save_image(path=PACK_PATH + "/results/" + str(tmp_file) + "/",
                           filename=str(tmp_file) + "_pre1_origin.png",
                           image=resized)

            mulmul = resized.copy()
            for i in range(20):
                ret, thresh = cv2.threshold(mulmul,
                                            np.average(mulmul) * 0.3, 255,
                                            cv2.THRESH_BINARY)
                cvf.save_image(path=PACK_PATH + "/results/" + str(tmp_file) +
                               "/",
                               filename=str(tmp_file) + "_pre2_thresh.png",
                               image=thresh)

                mulmul = cvf.normalizing(binary_img=resized * (thresh / 255))
                cvf.save_image(path=PACK_PATH + "/results/" + str(tmp_file) +
                               "/",
                               filename=str(tmp_file) + "_pre3_normalize.png",
                               image=mulmul)

            movavg = cvf.moving_avg_filter(binary_img=mulmul, k_size=10)
            adap = cvf.adaptiveThresholding(binary_img=movavg,
                                            neighbor=111,
                                            blur=False,
                                            blur_size=3)
            cvf.save_image(path=PACK_PATH + "/results/" + str(tmp_file) + "/",
                           filename=str(tmp_file) + "_pre4_adaptrhesh.png",
                           image=255 - adap)

            masking = resized * ((255 - adap) / 255)
            cvf.save_image(path=PACK_PATH + "/results/" + str(tmp_file) + "/",
                           filename=str(tmp_file) + "_pre5_mask1.png",
                           image=masking)

            movavg = cvf.moving_avg_filter(binary_img=masking, k_size=5)
            cvf.save_image(path=PACK_PATH + "/results/" + str(tmp_file) + "/",
                           filename=str(tmp_file) + "_pre6_mask2.png",
                           image=movavg)

            ret, thresh = cv2.threshold(movavg,
                                        np.average(movavg) * 0.5, 255,
                                        cv2.THRESH_BINARY_INV)
            cvf.save_image(path=PACK_PATH + "/results/" + str(tmp_file) + "/",
                           filename=str(tmp_file) + "_pre7_thresh.png",
                           image=thresh)

            contours = cvf.contouring(binary_img=thresh)
            boxes_tmp = cvf.contour2box(contours=contours, padding=20)
            boxes = cvf.rid_repetition(boxes=boxes_tmp, binary_img=thresh)

            if (os.path.exists(PACK_PATH + "/checkpoint/checker.index")):
                saver.restore(sess, PACK_PATH + "/checkpoint/checker")
                f = open(PACK_PATH + "/dataset/labels.txt", 'r')
                content = f.readlines()
                f.close()
                for idx in range(len(content)):
                    content[idx] = content[idx][:len(content[idx]) -
                                                1]  # rid \n

                boxes_pred = []
                cnt = 0
                for b in boxes:
                    x, y, w, h = b
                    if ((x > 0) and (y > 0)):
                        if ((x + w < resized.shape[1])
                                and (y + h < resized.shape[0])):

                            pad = cvf.zero_padding(image=thresh[y:y + h,
                                                                x:x + w],
                                                   height=500,
                                                   width=500)
                            pad2 = cvf.remain_only_biggest(binary_img=pad)
                            pad_res = cvf.zero_padding(image=resized[y:y + h,
                                                                     x:x + w],
                                                       height=500,
                                                       width=500)

                            xdata = pad_res * (pad2 / 255)

                            prob = sess.run(prediction,
                                            feed_dict={
                                                x_holder:
                                                convert_image(image=xdata,
                                                              height=height,
                                                              width=width,
                                                              channel=channel),
                                                training:
                                                False
                                            })
                            result = str(content[int(np.argmax(prob))])
                            acc = np.max(prob)

                            boxes_pred.append([x, y, w, h, result, acc])

                            # cvf.save_image(path=PACK_PATH+"/results/"+str(tmp_file)+"/", filename=str(tmp_file)+"_"+str(result)+"_"+str(int(round(acc, 2)*100))+"_"+str(cnt)+".png", image=xdata)

                            cnt += 1

                boxes_pred = sorted(boxes_pred,
                                    key=lambda l: l[4],
                                    reverse=True)  # sort by result
                boxes_pred = sorted(boxes_pred,
                                    key=lambda l: l[5],
                                    reverse=True)  # sort by acc

                ratio = origin.shape[0] / resized.shape[0]

                save_crops(image=resized,
                           boxes=boxes_pred,
                           ratio=1,
                           file_name=tmp_file)
                concats = concatenate(image=resized,
                                      boxes=boxes_pred,
                                      ratio=1,
                                      file_name=tmp_file)

                iou, bbox = intersection_over_union(filename=filename,
                                                    boxes=concats,
                                                    ratio=ratio)
                summf.write(str(filename))
                summf.write(",")
                summf.write(str(len(concats)))
                summf.write(",")
                summf.write(str(iou))
                summf.write("\n")

                origin_res1 = cvf.resizing(image=origin, width=500)
                origin_res2 = origin_res1.copy()
                origin_res3 = origin_res1.copy()

                origin_res_lr = draw_boxes(image=origin_res1,
                                           boxes=boxes_pred,
                                           ratio=1,
                                           file_name=tmp_file)
                cvf.save_image(path=PACK_PATH + "/results/" + str(tmp_file) +
                               "/",
                               filename=str(tmp_file) + "_origin_lr.png",
                               image=origin_res_lr)
                origin_res_concat1 = draw_boxes(image=origin_res1,
                                                boxes=concats,
                                                ratio=1,
                                                file_name=tmp_file)
                cvf.save_image(
                    path=PACK_PATH + "/results/" + str(tmp_file) + "/",
                    filename=str(tmp_file) + "_origin_lr_and_concat.png",
                    image=origin_res_concat1)
                origin_res_concat2 = draw_boxes(image=origin_res2,
                                                boxes=concats,
                                                ratio=1,
                                                file_name=tmp_file)
                cvf.save_image(path=PACK_PATH + "/results/" + str(tmp_file) +
                               "/",
                               filename=str(tmp_file) + "_origin_concat.png",
                               image=origin_res_concat2)
                if (len(bbox) > 0):
                    origin_res_bbox = draw_boxes(image=origin_res3,
                                                 boxes=bbox,
                                                 ratio=1,
                                                 file_name=tmp_file)
                    cvf.save_image(path=PACK_PATH + "/results/" +
                                   str(tmp_file) + "/",
                                   filename=str(tmp_file) + "_origin_bbox.png",
                                   image=origin_res_bbox)
                    origin_res_concat3 = draw_boxes(image=origin_res3,
                                                    boxes=concats,
                                                    ratio=1,
                                                    file_name=tmp_file)
                    cvf.save_image(
                        path=PACK_PATH + "/results/" + str(tmp_file) + "/",
                        filename=str(tmp_file) + "_origin_concat_bbox.png",
                        image=origin_res_concat3)

            else:
                print("You must training first!")
        else:
            print("Invalid File: " + str(filename))
    summf.close()
Esempio n. 8
0
def training_process(sess=None,
                     dataset=None,
                     x=None,
                     y_=None,
                     training=None,
                     train_step=None,
                     accuracy=None,
                     loss=None,
                     saver=None,
                     batch_size=0,
                     steps=0):

    print("\n** Training process start!")

    te_am = dataset.test.amount
    if (batch_size > te_am):
        batch_size = te_am

    if (not (util.check_path(PACK_PATH + "/checkpoint"))):
        util.make_path(PACK_PATH + "/checkpoint")

    train_acc_list = []
    test_acc_list = []
    train_loss_list = []
    test_loss_list = []

    stepper = 1
    if (steps >= 1000):
        stepper = int(steps / 100)

    print("\nTraining to " + str(steps) + " steps | Batch size: %d\n" %
          (batch_size))

    for i in range(steps):

        sys.stdout.write("Loading next batch\r")
        sys.stdout.flush()
        train_batch = dataset.train.next_batch(batch_size=batch_size)
        test_batch = dataset.test.next_batch(batch_size=batch_size)

        sys.stdout.write("Evalueation       \r")
        sys.stdout.flush()
        train_accuracy = accuracy.eval(feed_dict={
            x: train_batch[0],
            y_: train_batch[1],
            training: False
        })
        test_accuracy = accuracy.eval(feed_dict={
            x: test_batch[0],
            y_: test_batch[1],
            training: False
        })
        train_loss = loss.eval(feed_dict={
            x: train_batch[0],
            y_: train_batch[1],
            training: False
        })
        test_loss = loss.eval(feed_dict={
            x: test_batch[0],
            y_: test_batch[1],
            training: False
        })

        train_acc_list.append(train_accuracy)
        test_acc_list.append(test_accuracy)
        train_loss_list.append(train_loss)
        test_loss_list.append(test_loss)

        if (i % stepper == 0):
            print("step [ %d / %d ]\nAccuracy  train: %.5f  |  test: %.5f" %
                  (i, steps, train_accuracy, test_accuracy))
            print("CE loss   train: %.5f  |  test: %.5f" %
                  (train_loss, test_loss))

        sys.stdout.write("Training          \r")
        sys.stdout.flush()
        sess.run(train_step,
                 feed_dict={
                     x: train_batch[0],
                     y_: train_batch[1],
                     training: True
                 })

        saver.save(sess, PACK_PATH + "/checkpoint/checker")

    test_batch = dataset.test.next_batch(batch_size=batch_size)
    test_accuracy = accuracy.eval(feed_dict={
        x: test_batch[0],
        y_: test_batch[1],
        training: False
    })
    test_loss = loss.eval(feed_dict={
        x: test_batch[0],
        y_: test_batch[1],
        training: False
    })
    print("\nFinal Test accuracy, loss  | %.5f\t %.5f\n" %
          (test_accuracy, test_loss))

    util.save_graph_as_image(train_list=train_acc_list,
                             test_list=test_acc_list,
                             ylabel="accuracy")
    util.save_graph_as_image(train_list=train_loss_list,
                             test_list=test_loss_list,
                             ylabel="loss")
Esempio n. 9
0
def extract_segments(filename):

    tmp_sub, tmp_file = util.get_dir_and_file_name(path=filename)

    if (not (util.check_path(path=PACK_PATH + "/images/" + str(tmp_file)))):
        util.make_path(path=PACK_PATH + "/images/" + str(tmp_file))

    origin = cvf.load_image(path=filename)
    gray = cvf.rgb2gray(rgb=origin)
    resized = cvf.resizing(image=gray, width=500)
    avg = np.average(resized)

    # feed = cvf.feeding_outside_filter(binary_img=resized, thresh=100)
    # cvf.save_image(path=PACK_PATH+"/images/"+str(tmp_file)+"/", filename="feed.png", image=feed)
    movavg = cvf.moving_avg_filter(binary_img=resized, k_size=10)
    cvf.save_image(path=PACK_PATH + "/images/" + str(tmp_file) + "/",
                   filename="movavg.png",
                   image=movavg)

    ret, thresh = cv2.threshold(movavg,
                                np.average(movavg) * 0.5, 255,
                                cv2.THRESH_BINARY_INV)

    cvf.save_image(path=PACK_PATH + "/images/" + str(tmp_file) + "/",
                   filename="origin.png",
                   image=origin)
    cvf.save_image(path=PACK_PATH + "/images/" + str(tmp_file) + "/",
                   filename="thresh.png",
                   image=thresh)

    contours = cvf.contouring(binary_img=thresh)
    boxes = cvf.contour2box(contours=contours, padding=50)

    resized = cvf.resizing(image=gray, width=500)

    cnt = 0
    for box in boxes:
        x, y, w, h = box

        if ((x > 0) and (y > 0)):
            if ((x + w < resized.shape[1]) and (y + h < resized.shape[0])):

                cvf.save_image(
                    path=PACK_PATH + "/images/" + str(tmp_file) + "/",
                    filename=str(tmp_file) + "_0_" + str(cnt) + ".png",
                    image=thresh[y:y + h, x:x + w])
                pad = cvf.zero_padding(image=thresh[y:y + h, x:x + w],
                                       height=500,
                                       width=500)
                cvf.save_image(
                    path=PACK_PATH + "/images/" + str(tmp_file) + "/",
                    filename=str(tmp_file) + "_1_" + str(cnt) + ".png",
                    image=pad)
                cvf.save_image(
                    path=PACK_PATH + "/images/" + str(tmp_file) + "/",
                    filename=str(tmp_file) + "_2_" + str(cnt) + ".png",
                    image=resized[y:y + h, x:x + w])
                cnt += 1

    for b in boxes:
        x, y, w, h = b

        if ((x > 0) and (y > 0)):
            if ((x + w < resized.shape[1]) and (y + h < resized.shape[0])):
                cv2.rectangle(resized, (x, y), (x + w, y + h), (255, 255, 255),
                              2)
                cv2.rectangle(thresh, (x, y), (x + w, y + h), (255, 255, 255),
                              2)

    # cvf.save_image(path=PACK_PATH+"/images/"+str(tmp_file)+"/", filename="opened.png", image=dilated)
    cvf.save_image(path=PACK_PATH + "/images/" + str(tmp_file) + "/",
                   filename="contour.png",
                   image=thresh)
    cvf.save_image(path=PACK_PATH + "/images/" + str(tmp_file) + "/",
                   filename="resized.png",
                   image=resized)

    cvf.save_image(path=PACK_PATH + "/images/",
                   filename="resized" + str(tmp_file) + ".png",
                   image=resized)
Esempio n. 10
0
def main():

    extensions = [
        "BMP", "bmp", "PNG", "png", "JPG", "jpg", "JPEG", "jpeg", "DCM", "dcm"
    ]

    if ((not (dhand.check())) or (FLAGS.make)):
        print("\nEnter the data path.")
        path = input(">>> ")
        dhand.make(path=path,
                   height=500,
                   width=500,
                   channel=1,
                   extensions=extensions)

    dataset = dhand.load()

    sess = tf.InteractiveSession()

    data_size, height, width, channel = dataset.train.data_size
    classes = dataset.train.class_num

    data = tf.placeholder(tf.float32, shape=[None, data_size])
    label = tf.placeholder(tf.float32, shape=[None, classes])
    training = tf.placeholder(tf.bool)

    train_step, accuracy, loss, prediction = model.convolution_neural_network(
        x=data,
        y_=label,
        training=training,
        height=height,
        width=width,
        channel=channel,
        classes=classes)

    sess.run(tf.global_variables_initializer())

    saver = tf.train.Saver()

    print("\nDo you want to train? Y/N")
    user_need_train = input(">>> ")
    if (user_need_train.upper() == "Y"):
        sproc.training_process(sess=sess,
                               dataset=dataset,
                               x=data,
                               y_=label,
                               training=training,
                               train_step=train_step,
                               accuracy=accuracy,
                               loss=loss,
                               saver=saver,
                               batch_size=FLAGS.batch,
                               steps=FLAGS.steps)

    print("\nDo you want to validation? Y/N")
    user_need_valid = input(">>> ")
    if (user_need_valid.upper() == "Y"):
        sproc.prediction_process(sess=sess,
                                 dataset=dataset,
                                 x=data,
                                 y_=label,
                                 training=training,
                                 prediction=prediction,
                                 saver=saver,
                                 validation=FLAGS.validation)
    else:
        pass

    # print("\nEnter the CXR image path.")
    # cxr_path = input(">>> ")
    # seg.extract_segments(filename=cxr_path, height=height, width=width, channel=channel, sess=sess, x_holder=data, training=training, prediction=prediction, saver=saver)

    print("\nEnter the path")
    usr_path = input(">> ")
    if (util.check_path(usr_path)):
        extr.extract_lung(usr_path=usr_path,
                          extensions=extensions,
                          height=height,
                          width=width,
                          channel=channel,
                          sess=sess,
                          x_holder=data,
                          training=training,
                          prediction=prediction,
                          saver=saver)