Esempio n. 1
0
def brain_plot(r_name, viewtimes, brain):
    views = {'rh': ['medial', 'parietal'], 'lh': ['parietal', 'medial']}

    if type(brain) is str:
        hemi = brain
        brain = Brain('fsaverage',
                      hemi,
                      'inflated',
                      cortex='low_contrast',
                      subjects_dir=sv.subjects_dir,
                      background='w',
                      foreground='k')
    else:
        hemi = brain.geo.keys()[0]

    sv.show_labels_as_data(src_df_masked.loc[r_name], show_measure, brain,
                           **colorinfo)

    filepat = os.path.join(
        figdir, filepat_base + '_{}_{}_%02d.png'.format(hemi, r_name))

    brain.save_image_sequence([times.get_loc(t) for t in viewtimes],
                              filepat,
                              montage=views[hemi])

    return brain
Esempio n. 2
0
def make_brain_figures(srcdf, measure, cinfo, filepat_base, top=5):
    views = {'rh': ['medial', 'lateral'],
             'lh': ['lateral', 'medial']}
    
    toplabels = {}
    
    for hemi in ['lh', 'rh']:
        brain = Brain('fsaverage', hemi, 'inflated', cortex='low_contrast',
                      subjects_dir=sv.subjects_dir, background='w', 
                      foreground='k')
            
        sv.show_labels_as_data(srcdf, measure, brain, 
                               time_label=None, parc=parc, **cinfo)
        
        if top:
            ind = srcdf.index.get_level_values('label').map(
                    lambda x: x.startswith(hemi[0].upper()))
            
            topl = srcdf[ind].abs().sort_values(
                    measure, ascending=False).head(top)
            topl = (
                    topl[(topl[measure] != 0) 
                              & topl[measure].notna()]
                    .index.droplevel('time'))
            toplabels[hemi] = topl
            
            alllabels = mne.read_labels_from_annot(
                    'fsaverage', parc=parc, hemi=hemi)
            
            brain.remove_labels()
            for label in alllabels:
                if label.name in topl:
                    brain.add_label(label, borders=1, hemi=hemi, alpha=0.8, 
                                    color='k')
        
        # increase font size of colorbar - this only works by increasing the 
        # colorbar itself and setting the ratio of colorbar to text
        brain.data['colorbar'].scalar_bar.bar_ratio = 0.35
        brain.data['colorbar'].scalar_bar_representation.position = [0.075, 0.01]
        brain.data['colorbar'].scalar_bar_representation.position2 = [0.85, 0.12]
        
        filepat = os.path.join(figdir, filepat_base + '_{}.png'.format(hemi))
        
        brain.save_montage(filepat, views[hemi], colorbar=0)
        
        brain.close()
        
    infiles = [
            os.path.join(figdir, filepat_base + '_{}.png'.format(hemi))
            for hemi in ['lh', 'rh']]
    outfile = os.path.join(figdir, filepat_base + '.png')
    os.system("montage -tile 2x1 -geometry +0+0 {} {}".format(
            ' '.join(infiles), outfile))
    
    return toplabels
Esempio n. 3
0
def plot(r_name, measure, mask=None, clim=[0, 3., 5], perm=0):
    src_df = second_level.loc[perm].xs(r_name, axis=1, level='regressor')

    if mask:
        insig = pd.np.logical_not(second_level.loc[perm,
                                                   ('significant', r_name)])
        src_df[insig.values] = 0

    src_df['time'] = 0
    src_df.set_index('time', append=True, inplace=True)

    if measure in ['tval', 'mean']:
        labels = sv.show_labels_as_data(src_df,
                                        measure,
                                        brain,
                                        colormap='divtrans',
                                        clim=clim)
    else:
        labels = sv.show_labels_as_data(src_df, measure, brain)

    return labels
Esempio n. 4
0
#%% load specific regressor
r_name = 'dot_x'
show_measure = 'mu_mean'

src_df_masked = ss.load_src_df(basefile, r_name, clusters)

brain = Brain('fsaverage',
              'both',
              'inflated',
              cortex='low_contrast',
              subjects_dir=sv.subjects_dir,
              background='w',
              foreground='k')

labels = sv.show_labels_as_data(src_df_masked,
                                show_measure,
                                brain,
                                transparent=True)

#brain.scale_data_colormap(src_df_masked[show_measure].min(),
#                          src_df_masked[show_measure].median(),
#                          src_df_masked[show_measure].max(), True)

brain.scale_data_colormap(0.01, 0.025, 0.06, True)

#labels = sv.show_labels_as_data(src_df_masked, 'mu_mean', brain,
#                                transparent=True,
#                                region_aggfun=lambda a: np.max(a, axis=0))

#tv = TimeViewer(brain)
Esempio n. 5
0
srcdf_normed = srcdf.copy()
if normalise:
    for wname in winnames:
        normed, _, _ = helpers.normalise_magnitudes(
                srcdf.loc[(slice(None), wname), :].dropna())
        srcdf_normed.loc[normed.index] = normed

if interactive:
    hemi = 'lh'
    wname = 'build-up'
    
    brain = Brain('fsaverage', hemi, 'inflated', cortex='low_contrast',
                  subjects_dir=sv.subjects_dir, background='w', foreground='k')
    
    sv.show_labels_as_data(srcdf_normed.loc[(slice(None), wname), :], 
                           show_measure, brain, time_label=None, parc=parc,
                           **get_colorinfo(srcdf, show_measure))
else:
    toplstrs = []
    for wname in winnames:
        filepat_base = 'win_brain_{}_{}_{}'.format(r_name, show_measure, wname)
        
        df = srcdf_normed.loc[(slice(None), wname), :]
        if normalise:
            cinfo = get_colorinfo(srcdf_normed, show_measure)
        else:
            cinfo = get_colorinfo(df, show_measure)
            
        toplabels = make_brain_figures(df, show_measure, cinfo, filepat_base)
        
        toplstrs.append('{}: left - {}; right - {}'.format(
    def brain_plot(
        wname,
        brain,
        toplabels=None,
        save=False,
    ):
        views = {
            'rh':
            ['medial',
             'lateral'],  #{'azimuth': -20, 'elevation': 62, 'roll': -68}], 
            'lh': ['lateral', 'medial']
        }

        if type(brain) is str:
            hemi = brain
            brain = Brain('fsaverage',
                          hemi,
                          'inflated',
                          cortex='low_contrast',
                          subjects_dir=sv.subjects_dir,
                          background='w',
                          foreground='k')
        else:
            hemi = brain.geo.keys()[0]

        srcdf = pd.DataFrame(xma_win[wname].values.copy(),
                             index=pd.MultiIndex.from_product(
                                 [labels, [0]], names=['label', 'time']),
                             columns=[measure])

        # get colorinfo based on distribution of differences before nulling
        cinfo = get_colorinfo(srcdf)

        # set all areas to 0 for which there is insufficient evidence that they
        # represent evidence; for positive differences supporting dot_x only
        # consider significant dot_x areas and equally for accev and negative
        for reg in regressors:
            if reg == 'accev':
                siglabels = srcdf[srcdf[measure] < 0].xs(0, level='time').index
            else:
                siglabels = srcdf[srcdf[measure] > 0].xs(0, level='time').index
            siglabels = is_significant.xs(
                reg, level='regressor').loc[list(siglabels), wname]
            siglabels = siglabels[~siglabels].index
            srcdf.loc[(list(siglabels), 0), measure] = 0

        sv.show_labels_as_data(srcdf,
                               measure,
                               brain,
                               time_label=None,
                               parc=parc,
                               **cinfo)

        #        if toplabels is not None:
        #            alllabels = mne.read_labels_from_annot(
        #                    'fsaverage', parc=parc, hemi=hemi)
        #            for label in alllabels:
        #                if label.name in toplabels[hemi]:
        #                    brain.add_label(label, borders=1, hemi=hemi, alpha=0.8,
        #                                    color='k')

        # increase font size of colorbar - this only works by increasing the
        # colorbar itself and setting the ratio of colorbar to text
        brain.data['colorbar'].scalar_bar.bar_ratio = 0.35
        brain.data['colorbar'].scalar_bar_representation.position = [
            0.075, 0.01
        ]
        brain.data['colorbar'].scalar_bar_representation.position2 = [
            0.85, 0.12
        ]

        if save:
            filepat = os.path.join(
                figdir, filepat_base + '_{}_{}.png'.format(hemi, wname))

            brain.save_montage(filepat, views[hemi], colorbar=0)

        return brain, srcdf[srcdf[measure].abs() > cinfo['fmid']].xs(
            0, level='time')
def brain_plot(brain,
               wname,
               toplabels=False,
               save=False,
               backface_culling=True):
    if r_name in ['dot_x', 'dot_y', 'dot_x_sign']:
        views = {
            'rh':
            ['medial',
             'parietal'],  #{'azimuth': -20, 'elevation': 62, 'roll': -68}], 
            'lh': ['parietal', 'medial']
        }
    elif r_name in ['sum_dot_x', 'response']:
        views = {'rh': ['medial', 'lateral'], 'lh': ['lateral', 'medial']}

    if type(brain) is str:
        hemi = brain
        brain = Brain('fsaverage',
                      hemi,
                      'inflated',
                      cortex='low_contrast',
                      subjects_dir=sv.subjects_dir,
                      background='w',
                      foreground='k')
    else:
        hemi = brain.geo.keys()[0]

    if common_color_scale:
        cinfo = get_colorinfo(avsrcdf)
    else:
        cinfo = get_colorinfo(results[wname]['avsrcdf'])

    sv.show_labels_as_data(results[wname]['avsrcdf'],
                           show_measure,
                           brain,
                           time_label=None,
                           parc=parc,
                           **cinfo)

    if backface_culling:
        brain.data['surfaces'][0].actor.property.backface_culling = True

    if toplabels:
        brain.remove_labels()

        alllabels = mne.read_labels_from_annot('fsaverage',
                                               parc=parc,
                                               hemi=hemi)
        for label in alllabels:
            if label.name in results[wname]['toplabels'][hemi]:
                brain.add_label(label,
                                borders=1,
                                hemi=hemi,
                                alpha=0.8,
                                color='k')

        if backface_culling:
            for ldict in brain._label_dicts.values():
                ldict['surfaces'][0].actor.property.backface_culling = True

    # increase font size of colorbar - this only works by increasing the
    # colorbar itself and setting the ratio of colorbar to text
    brain.data['colorbar'].scalar_bar.bar_ratio = 0.35
    brain.data['colorbar'].scalar_bar_representation.position = [0.075, 0.01]
    brain.data['colorbar'].scalar_bar_representation.position2 = [0.85, 0.12]

    if save:
        filepat = os.path.join(figdir,
                               filepat_base + '_{}_{}.png'.format(wname, hemi))

        brain.save_montage(filepat, views[hemi], colorbar=0)

    return brain