Esempio n. 1
0
    def test_component_list(self):
        g = SimpleGraph()
        g.from_graph_sequence([4, 3, 3, 2, 2, 1, 1])
        comps = g.component_list()

        assert [1, 2, 3, 4, 5] in comps.values()
        assert [6, 7] in comps.values()
Esempio n. 2
0
def find_shortest_path_dijkstra(
        g: SimpleGraph,
        source: Node) -> Tuple[Dict[int, float], Dict[int, int]]:
    """ Przyjmuje graf i zrodlo (wierzcholek).
        Zwraca:
        - slownik odleglosci od zrodla
        - slownik poprzednikow
    """
    predecessors = {}
    distance = {}
    # kolejka priorytetowa dla wierzchołkow grafu (klucz: aktualnie wyliczona odleglosc)
    Q = []
    for node in g.nodes:
        distance[node] = float("inf")
        predecessors[node] = None
        Q.append(node)
    distance[source] = 0

    while Q:
        Q.sort(key=lambda n: distance[n])
        u = Q.pop(0)
        for v in g.node_neighbours(u):
            if v in Q:
                new_distance = distance[u] + g.edge_to_node(u, v).weight
                old_distance = distance[v]
                if new_distance < old_distance:
                    distance[v] = new_distance
                    predecessors[v] = u

    d = {node: distance[node] for node in g.nodes}
    p = {node: predecessors[node] for node in g.nodes}

    return d, p
Esempio n. 3
0
    def test_components(self):
        g = SimpleGraph()
        g.from_graph_sequence([4, 3, 3, 2, 2, 1, 1])
        comps = g.components()

        assert comps[1] == comps[2] == comps[3] == comps[4] == comps[5]
        assert comps[6] == comps[7]
        assert comps[1] != comps[6]
Esempio n. 4
0
def example05():
    g = SimpleGraph().from_coordinates("input.dat")
    P = None
    for MAX_IT in range(10, 150, 5):
        P = simulated_annealing(g, MAX_IT, save=True, P=P)
        length = circuit_length(g.to_adjacency_matrix(), P)
        with open("P_5.tmp", "a") as f:
            f.write(f"{length:.3f}, {P}\n")
Esempio n. 5
0
def example01():
    """Ciąg graficzny"""
    print(is_valid_graph_sequence([4, 3, 3, 2, 2, 1, 1]))
    print(is_valid_graph_sequence([4, 3, 3, 2, 2, 1]))
    print(is_valid_graph_sequence([4, 4, 3, 1, 2]))

    g = SimpleGraph().from_graph_sequence([4, 3, 3, 2, 2, 1, 1])
    g.save(filename="graph1", file_format="png")
Esempio n. 6
0
def example07():
    g = SimpleGraph().from_coordinates("input.dat")
    P = None
    for _ in range(100):
        P = simulated_annealing(g, MAX_IT=100, save=True, P=P)
        length = circuit_length(g.to_adjacency_matrix(), P)
        print(length)
        with open("P.dat", "a") as f:
            f.write(f"{length:.3f}, {P}\n")
Esempio n. 7
0
    def test_save_to_file_and_load(self):
        g = SimpleGraph(8)
        g.add_random_edges(15)

        before = g.to_adjacency_list()
        g.save("test", "al")
        g.load("test.al")
        after = g.to_adjacency_list()
        assert before == after
Esempio n. 8
0
    def test_incidence_matrix_file(self):
        g = SimpleGraph(8)
        g.add_random_edges(15)

        before = g.to_adjacency_matrix()
        g.save("test", "im")
        g.load("test.im")
        after = g.to_adjacency_matrix()

        assert before == after
 def get_k_regular_graph(size, k, connected=False) -> SimpleGraph:
     """Graf z wierzchołkami o tym samym stopniu"""
     seq = [k for _ in range(size)]
     g = SimpleGraph().from_graph_sequence(seq)
     if connected:
         if k < 2 and size != 2:
             raise ValueError("Nie da się stworzyć zadanego grafu.")
         while True:
             if g.is_connected_graph():
                 break
             g.randomize(size)
     return g
Esempio n. 10
0
    def test_incidence_matrix(self):
        g = SimpleGraph(8)
        g.add_random_edges(15)

        before = g.to_adjacency_list()
        g.from_incidence_matrix(g.to_incidence_matrix())
        after = g.to_adjacency_list()

        assert before == after
Esempio n. 11
0
def load_graph_to_work_on(args):
    g = SimpleGraph()

    if args.load:
        g.load(args.load)

    elif args.n:
        g.add_nodes(int(args.n))
        if args.l:
            g.add_random_edges(int(args.l))
        elif args.p:
            g.connect_random(float(args.p))
    return g
Esempio n. 12
0
def simulated_annealing(g: SimpleGraph,
                        MAX_IT=None,
                        P: List[int] = None,
                        save=False):
    if not g.is_complete():
        return ValueError("Do tego algorytmu graf musi być pełny.")

    if P is None:
        P = [n for n in range(1, len(g) + 1)]
        random.shuffle(P)

    if MAX_IT is None:
        MAX_IT = len(g)

    adj_m = g.to_adjacency_matrix()
    d = circuit_length(adj_m, P)
    for i in range(100, 0, -1):
        T = 0.001 * i**2
        for _ in range(MAX_IT):
            # switch: a-b c-d --> a-c b-d
            _, b, c, _ = _choose_nodes(P)
            P[b], P[c] = P[c], P[b]

            d_new = circuit_length(adj_m, P)
            if d_new < d:
                d = d_new
            else:
                r = random.random()
                if r < math.exp(-(d_new - d) / T):
                    d = d_new
                else:
                    # switch back
                    P[b], P[c] = P[c], P[b]

    if save:
        x = [g.x[n - 1] for n in P]
        y = [g.y[n - 1] for n in P]

        # connect first and last point
        x.append(g.x[P[0] - 1])
        y.append(g.y[P[0] - 1])

        plt.plot(x, y, "-o")
        plt.title(f"MAX_IT={MAX_IT}, d={d:.3f}")
        plt.xlabel("x")
        plt.ylabel("y")
        plt.savefig("SA.png")
        plt.clf()

    return P
Esempio n. 13
0
    def test_is_connected_graph(self):
        g = SimpleGraph(4)
        g.connect(1, 2)
        g.connect(3, 4)
        assert not g.is_connected_graph()

        g.connect(2, 3)
        assert g.is_connected_graph()
Esempio n. 14
0
 def test_add_random_edges(self):
     g = SimpleGraph(8)  # 8 vertices => max 28 edges
     g.add_random_edges(8)
     assert len(g.edges) == 8
     g.add_random_edges(20)
     assert len(g.edges) == 28
     with pytest.raises(ValueError):
         g.add_random_edges(1)
Esempio n. 15
0
    def test_adjacency_matrix(self):
        g = SimpleGraph(8)
        g.add_random_edges(15)

        before = g.to_adjacency_matrix()
        g.from_adjacency_matrix(before)
        after = g.to_adjacency_matrix()

        assert before == after
Esempio n. 16
0
def find_hamiltonian_circuit(g: SimpleGraph) -> List[Node]:
    """Znajduje losowy cykl Hamiltona w grafie"""
    g = copy.deepcopy(g)
    if not g.is_connected_graph():
        raise ValueError(f"Graf nie jest spójny:\n{g}")
    stack = [random.choice(tuple(g.nodes))]
    solution = hamilton_search_r(g, stack)
    return solution
Esempio n. 17
0
def hamilton_search_r(g: SimpleGraph, stack: List[Node]) -> List[Node]:
    # Zawiera wszystkie wierzcholki
    if set(stack) == g.nodes:
        # Istnieje połączenie między pierwszym a ostatnim
        if g.is_connected(stack[0], stack[-1]):
            return stack
        else:
            stack.pop
            return []
    else:
        for neighbour in g.node_neighbours(stack[-1]):
            if neighbour in stack:
                continue
            stack.append(neighbour)
            if hamilton_search_r(g, stack):
                return stack
    raise ValueError(f"Graf nie jest Hamiltonowski:\n{g}")
Esempio n. 18
0
    def get_eulerian_graph(size: int = None) -> SimpleGraph:
        """Losowy graf Eulerowski"""
        if size is None:
            size = random.randint(2, 16)
        while True:
            seq = []
            for d in range(size):
                d = random.randint(2, size - 1)
                seq.append(d - d % 2)
            if is_valid_graph_sequence(seq):
                break

        g = SimpleGraph().from_graph_sequence(seq)
        while True:
            if g.is_connected_graph():
                break
            g.randomize(size)
        return g
Esempio n. 19
0
def find_eulerian_trail(g: SimpleGraph) -> List[Node]:
    """Znajduje losowy cykl Eulera w grafie"""
    if not g.is_eulerian():
        raise ValueError(f"Nie jest to graf Eulerowski\n{g}")

    solution = []
    stack = [random.choice(tuple(g.nodes))]
    while len(stack) != 0:
        current_vertex = stack[-1]
        if g.node_degree(current_vertex) == 0:
            solution.append(current_vertex)
            stack.pop()
        else:
            next_vertex = random.choice(tuple(
                g.node_edges(current_vertex))).end
            g.disconnect(current_vertex, next_vertex)
            stack.append(next_vertex)
    return solution
Esempio n. 20
0
    def test_connect(self):
        g = SimpleGraph(8)
        n1 = 1
        n2 = 2

        g.connect(n1, n2)
        assert g.is_connected(n1, n2)
        assert g.is_connected(n2, n1)

        g.disconnect(n1, n2)
        assert not g.is_connected(n1, n2)
        assert not g.is_connected(n2, n1)
Esempio n. 21
0
def get_minimum_spanning_tree_kruskal(g: SimpleGraph) -> SimpleGraph:
    """
    Przyjmuje graf
    Zwraca jego minimalne drzewo rozpinające
    Korzysta z algorytmu kruskala
    """
    # minimum spanning tree
    mst = SimpleGraph(len(g))
    Q = []
    for edge in g.edges:
        Q.append(edge)

    while Q and not mst.is_connected_graph():
        Q.sort(key=lambda e: e.weight)
        current_edge = Q.pop(0)
        comps = mst.components()
        if comps[current_edge.begin] != comps[current_edge.end]:
            mst.edges.add(current_edge)
    return mst
Esempio n. 22
0
 def get_random_2D_graph(
     size=20, x_min=-50, x_max=50, y_min=-50, y_max=50
 ) -> SimpleGraph:
     filename = f"{size}_coordinates.tmp"
     with open(filename, "w") as f:
         for _ in range(size):
             x = random.randint(x_min, x_max)
             y = random.randint(y_min, y_max)
             f.write(f"{x} {y}\n")
     g = SimpleGraph().from_coordinates(filename)
     return g
Esempio n. 23
0
    def test_from_graph_sequence(self):
        g = SimpleGraph()
        g.from_graph_sequence([4, 3, 3, 2, 2, 1, 1])
        assert g.to_adjacency_list() == {
            1: {2, 3, 4, 5},
            2: {1, 3, 4},
            3: {1, 2, 5},
            4: {1, 2},
            5: {1, 3},
            6: {7},
            7: {6},
        }
        assert g.graph_sequence() == [4, 3, 3, 2, 2, 1, 1]

        with pytest.raises(ValueError):
            g.from_graph_sequence([4, 3, 3, 2, 2, 1])
Esempio n. 24
0
def example03():
    """Największa wspólna składowa"""
    g = SimpleGraph().from_graph_sequence([4, 3, 3, 2, 2, 1, 1])
    g.save(filename="graph3", file_format="png", color_components=True)
    pprint(g.component_list())
    print(f"Największa składowa: {g.largest_component()}")
Esempio n. 25
0
def example02():
    """Randomizacja"""
    g = SimpleGraph().from_graph_sequence([4, 3, 3, 2, 2, 1, 1])
    g.save(filename="graph2_before", file_format="png")
    g.randomize(100)
    g.save(filename="graph2_after", file_format="png")
 def test_breadth_first_search(self, graph, source, target, trail):
     g = SimpleGraph().from_adjacency_list(graph)
     tr = get_trail_to_node(breadth_first_search(g, source, target), target)
     assert tr == trail
 def test_minimax_get_graph_center(self, graph, minimax_center):
     g = SimpleGraph().from_adjacency_matrix(graph)
     assert get_minimax_graph_center(g) == minimax_center
Esempio n. 28
0
 def get_random_graph(max_size=20) -> SimpleGraph:
     size = random.randint(2, max_size)
     g = SimpleGraph(size)
     g.connect_random(random.random())
     return g
Esempio n. 29
0
def load_graph_to_work_on(args):
    g = SimpleGraph()

    if args.load:
        g.load(args.load)

    elif args.n:
        g.add_nodes(int(args.n))
        if args.l:
            g.add_random_edges(int(args.l))
        elif args.p:
            g.connect_random(float(args.p))

    if args.w is not None:
        if args.w[0]:
            g.assign_random_weights(int(args.w[0][0]), int(args.w[0][1]))
        else:
            g.assign_random_weights()
    return g