Esempio n. 1
0
def test_dot():
    shape_x = (8, 6)
    block_shape_x = (2, 2)
    shape_y = (6, 4)
    block_shape_y = (2, 4)

    x = sparse.brandom(shape_x, block_shape_x, 0.6, format='bcoo')
    x_d = x.todense()

    y = sparse.brandom(shape_y, block_shape_y, 0.6, format='bcoo')
    y_d = y.todense()

    c = x.dot(y)
    elemC = x_d.dot(y_d)
    assert_eq(elemC, c)

    shape_x = (9, 4, 18)
    block_shape_x = (9, 2, 1)
    shape_y = (18, 8, 10, 12)
    block_shape_y = (1, 8, 1, 3)

    x = sparse.brandom(shape_x, block_shape_x, 0.6, format='bcoo')
    x_d = x.todense()

    y = sparse.brandom(shape_y, block_shape_y, 0.6, format='bcoo')
    y_d = y.todense()

    c = x.dot(y)
    elemC = x_d.dot(y_d)
    assert_eq(elemC, c)
Esempio n. 2
0
def test_multiply():
    x = sparse.brandom((4, 2, 6), (2, 1, 2), 0.5, format='bcoo')
    x_d = x.todense()
    y = sparse.brandom((4, 2, 6), (2, 1, 2), 0.5, format='bcoo')
    y_d = y.todense()
    z = x * y
    z_d = x_d * y_d
    assert_eq(z, z_d)

    data = np.arange(1, 4).repeat(4).reshape(3, 2, 2)
    coords = np.array([[1, 1, 0], [0, 1, 1]])
    x = BCOO(coords, data=data, shape=(4, 4), block_shape=(2, 2))
    x_d = x.todense()
    y = x * x
    y_d = x_d * x_d
    assert_eq(y, y_d)

    data_x = np.arange(1, 4).repeat(4).reshape(3, 2, 2)
    coords_x = np.array([[1, 1, 0], [0, 1, 1]])
    x = BCOO(coords_x, data=data_x, shape=(4, 4), block_shape=(2, 2))
    x_d = x.todense()
    data_y = np.array([[[-2.0, -2.5], [-2, -2]], [[-2, -2], [-2, -2]]])
    coords_y = np.array([[0, 1], [0, 1]])
    y = BCOO(coords_y, data=data_y, shape=(4, 4), block_shape=(2, 2))
    y_d = y.todense()
    z = x * y
    z_d = x_d * y_d
    assert_eq(z, z_d)
Esempio n. 3
0
def test_einsum_with_transpose():
    shape_x = (8, 6)
    block_shape_x = (2, 2)
    x = sparse.brandom(shape_x, block_shape_x, 0.3, format='bcoo').T
    x_d = x.todense()

    shape_y = (8, 4, 6)
    block_shape_y = (2, 2, 2)
    y = sparse.brandom(shape_y, block_shape_y, 0.3, format='bcoo').transpose(
        (2, 0, 1))
    y_d = y.todense()

    c = bcalc.einsum("ij,ijk->k", x, y, DEBUG=False)
    elemC = np.einsum("ij,ijk->k", x_d, y_d)
    assert_eq(elemC, c)

    shape_x = (8, 4, 9)
    block_shape_x = (1, 2, 3)
    x = sparse.brandom(shape_x, block_shape_x, 0.2, format='bcoo').transpose(
        (1, 0, 2))
    x_d = x.todense()

    shape_y = (9, 4, 6)
    block_shape_y = (3, 2, 2)
    y = sparse.brandom(shape_y, block_shape_y, 0.5, format='bcoo').T
    y_d = y.todense()

    c = bcalc.einsum("jik,nmk->minj", x, y, DEBUG=False)
    elemC = np.einsum("jik,nmk->minj", x_d, y_d)
    assert_eq(elemC, c)

    c = bcalc.einsum("jik,nmk->ijmn", x, y, DEBUG=False)
    elemC = np.einsum("jik,nmk->ijmn", x_d, y_d)
    assert_eq(elemC, c)
Esempio n. 4
0
def test_add_multi_dim_array():
    x = sparse.brandom((4, 2, 6), (2, 1, 2), 0.5, format='bcoo')
    x_d = x.todense()
    y = sparse.brandom((4, 2, 6), (2, 1, 2), 0.5, format='bcoo')
    y_d = y.todense()

    z = x + y
    z_d = x_d + y_d
    assert_eq(z, z_d)
Esempio n. 5
0
def test_normal_einsum(shape_x, block_shape_x, shape_y, block_shape_y, descr):
    x = sparse.brandom(shape_x, block_shape_x, 0.3, format='bcoo')
    x_d = x.todense()

    y = sparse.brandom(shape_y, block_shape_y, 0.3, format='bcoo')
    y_d = y.todense()

    c = bcalc.einsum(descr, x, y, DEBUG=False)
    elemC = np.einsum(descr, x_d, y_d)
    assert_eq(elemC, c)
Esempio n. 6
0
def test_einsum_broadcast():
    shape_x = (8, 6)
    block_shape_x = (2, 2)
    x = sparse.brandom(shape_x, block_shape_x, 0.3, format='bcoo')
    x_d = x.todense()

    shape_y = (8, 6, 6)
    block_shape_y = (2, 2, 2)
    y = sparse.brandom(shape_y, block_shape_y, 0.3, format='bcoo')
    y_d = y.todense()

    elemC = np.einsum("ij,klm->ijklm", x_d, y_d)
    c = bcalc.einsum("ij,klm->ijklm", x, y, DEBUG=False)
    assert_eq(elemC, c)
Esempio n. 7
0
def test_block_eigh():
    def is_diagonal(A):
        return np.allclose(A - np.diag(np.diagonal(A)), 0.0)

    #np.set_printoptions(3, linewidth = 1000, suppress = True)
    #np.random.seed(0)
    x = sparse.brandom((16, 16), (4, 4), 0.2, format='bcoo')
    x += x.T

    y = x.todense()
    #eigval_sp, eigvec_sp = bcore.block_eigh(x)[1].todense()
    eigval_sp_bcoo, eigvec_sp_bcoo = bcore.block_eigh(x, block_sort=True)
    eigval_sp = eigval_sp_bcoo.todense()
    eigvec_sp = eigvec_sp_bcoo.todense()

    diagonalized_mat_sp = eigvec_sp.T.dot(x.todense().dot(eigvec_sp))

    assert (is_diagonal(diagonalized_mat_sp))
    eigval_np = np.linalg.eigh(x.todense())[0]
    assert (np.allclose(np.sort(np.diagonal(diagonalized_mat_sp)), eigval_np))

    eigval_norm = np.array([np.linalg.norm(d) for d in eigval_sp_bcoo.data])
    print eigval_norm

    eig = np.diag(diagonalized_mat_sp)
    print eig
    for i in range(0, len(eig), 4):
        print np.linalg.norm(eig[i:(i + 4)])
Esempio n. 8
0
def test_subtraction():
    x = sparse.brandom((4, 2, 6), (2, 1, 2), 0.5, format='bcoo')
    x_d = x.todense()
    y = sparse.brandom((4, 2, 6), (2, 1, 2), 0.5, format='bcoo')
    y_d = y.todense()
    z = x - y
    z_d = x_d - y_d
    assert_eq(z, z_d)

    data = np.arange(1, 4).repeat(4).reshape(3, 2, 2)
    coords = np.array([[1, 1, 0], [0, 1, 1]])
    x = BCOO(coords, data=data, shape=(4, 4), block_shape=(2, 2))
    x_d = x.todense()
    y = x - x
    y_d = x_d - x_d
    assert_eq(y, y_d)
Esempio n. 9
0
def test_block_slicing(index, npindex):
    s = sparse.brandom((4, 9, 16), (2, 3, 4), density=0.5)
    x = s.todense()
    if callable(npindex):
        assert_eq(s.getblock(index), npindex(x))
    else:
        assert_eq(s.getblock(index), x[npindex])
Esempio n. 10
0
def test_random_shape_nnz(shape, block_shape, density):
    s = sparse.brandom(shape, block_shape, density, format='bdok')

    assert isinstance(s, BDOK)

    assert s.shape == shape
    expected_nnz = density * np.prod(shape)
    assert np.floor(expected_nnz) <= s.nnz <= np.ceil(expected_nnz)
Esempio n. 11
0
def test_einsum_multi_tensor():
    shape_x = (12, 8, 9)
    block_shape_x = (2, 4, 3)
    x = sparse.brandom(shape_x, block_shape_x, 0.5, format='bcoo')
    x_d = x.todense()

    shape_y = (9, 5)
    block_shape_y = (3, 1)
    y = sparse.brandom(shape_y, block_shape_y, 0.5, format='bcoo')
    y_d = y.todense()

    shape_z = (5, 8)
    block_shape_z = (1, 4)
    z = sparse.brandom(shape_z, block_shape_z, 0.5, format='bcoo')
    z_d = z.todense()

    c = bcalc.einsum('kxy,yz,zx->k', x, y, z)
    elemC = np.einsum('kxy,yz,zx->k', x_d, y_d, z_d)
    assert_eq(elemC, c)
Esempio n. 12
0
def test_asformat():
    s = sparse.brandom((4, 6, 8), (2, 3, 4), 0.5, format='bdok')
    s2 = s.asformat('bcoo')
    #s2 = s.asformat('bdok')

    #s = sparse.brandom((4, 3), (2, 1), 0.5, format='bdok')
    #x = np.array([[1,-1,0,0],[1,-1,0,0],[2,2,3,3],[2,2,3,3]])
    #s = BDOK(x, block_shape = (2, 2))
    #s2 = s.asformat('bcoo')

    assert_eq(s, s2)
Esempio n. 13
0
def test_einsum_mix_types():
    shape_x = (5, 1, 4, 2, 3)
    block_shape_x = (1, 1, 2, 2, 3)
    x = sparse.brandom(shape_x, block_shape_x, 0.5)
    x.data = x.data + 1j
    x_d = x.todense()

    shape_y = (5, 1, 11)
    block_shape_y = (1, 1, 1)
    y = sparse.brandom(shape_y, block_shape_y, 0.5)
    y.data = y.data.astype(np.float32)
    y_d = y.todense()

    c = bcalc.einsum('ijklm,ijn->lnmk', x, y)
    elemC = np.einsum('ijklm,ijn->lnmk', x_d, y_d)
    assert_eq(elemC, c)

    c = bcalc.einsum('ijklm,ijn->lnmk', x_d, y)
    elemC = np.einsum('ijklm,ijn->lnmk', x_d, y_d)
    assert_eq(elemC, c)
Esempio n. 14
0
def test_inner_contraction():
    shape_x = (8, 6)
    block_shape_x = (2, 2)
    x = sparse.brandom(shape_x, block_shape_x, 0.3, format='bcoo')
    x_d = x.todense()

    shape_y = (8, 6, 6)
    block_shape_y = (2, 2, 2)
    y = sparse.brandom(shape_y, block_shape_y, 0.3, format='bcoo')
    y_d = y.todense()

    elemC = np.einsum("in,ijj->n", x_d, y_d)
    with pytest.raises(NotImplementedError):
        c = bcalc.einsum("in,ijj->n", x, y, DEBUG=False)
        assert_eq(elemC, c)

    elemC = np.einsum("ijj->i", y_d)
    with pytest.raises(NotImplementedError):
        c = bcalc.einsum("ijj->i", y, DEBUG=False)
        assert_eq(elemC, c)
Esempio n. 15
0
def test_scaling():
    data_x = np.arange(3, 6).repeat(4).reshape(3, 2, 2).astype(np.double)
    coords_x = np.array([[1, 1, 0], [0, 1, 1]])
    x = BCOO(coords_x, data=data_x, shape=(4, 4), block_shape=(2, 2))
    x_d = x.todense()
    z = x * -3.1
    z_d = x_d * -3.1
    assert_eq(z, z_d)

    x = sparse.brandom((4, 2, 6), (2, 1, 2), 0.5, format='bcoo')
    x_d = x.todense()
    scaling_factor = np.random.random()
    z = x * scaling_factor
    z_d = x_d * scaling_factor
    assert_eq(z, z_d)

    x = sparse.brandom((4, 2, 6), (2, 1, 2), 0.5, format='bcoo')
    x_d = x.todense()
    scaling_factor = 0
    z = x * scaling_factor
    z_d = x_d * scaling_factor
    assert_eq(z, z_d)
Esempio n. 16
0
def test_einsum_misc():
    shape_x = (4, 2, 2)
    block_shape_x = (2, 2, 2)
    x = sparse.brandom(shape_x, block_shape_x, 0.5, format='bcoo')
    x_d = x.todense()

    shape_y = (2, 2)
    block_shape_y = (2, 1)
    y = sparse.brandom(shape_y, block_shape_y, 0.5, format='bcoo')
    y_d = y.todense()

    shape_z = (2, 2)
    block_shape_z = (1, 2)
    z = sparse.brandom(shape_z, block_shape_z, 0.5, format='bcoo')
    z_d = z.todense()

    c = bcalc.einsum('kxy,yz->kxz', x, y)
    elemC = np.einsum('kxy,yz->kxz', x_d, y_d)
    assert_eq(elemC, c)

    c = bcalc.einsum('kxy,yz,zx->k', x, y, z)
    elemC = np.einsum('kxy,yz,zx->k', x_d, y_d, z_d)
    assert_eq(elemC, c)
Esempio n. 17
0
def test_setitem():
    s = sparse.brandom((6, 6, 8), (2, 3, 4), 0.5, format='bdok')
    x = s.todense()
    x_b = s.to_bumpy()

    shape = (3, 2, 2)
    value = np.random.random((2, 3, 4))
    idx = np.random.randint(np.prod(shape))
    idx = np.unravel_index(idx, shape)

    s[idx] = value
    x_b[idx] = value

    assert_eq(x_b.todense(), s.todense())
Esempio n. 18
0
def test_bcoo_related():
    s = sparse.brandom((10, 10), (2, 2), 0.3, format='bdok')
    s2 = s.asformat('bcoo')

    #s2 = s.asformat('bdok')

    #s = sparse.brandom((4, 3), (2, 1), 0.5, format='bdok')
    #x = np.array([[1,-1,0,0],[1,-1,0,0],[2,2,3,3],[2,2,3,3]])
    #s = BDOK(x, block_shape = (2, 2))
    #s2 = s.asformat('bcoo')

    print s.data
    exit()
    assert_eq(s, s2)
Esempio n. 19
0
def test_einsum_as_transpose():
    # swap axes
    shape_y = (8, 4, 6)
    block_shape_y = (2, 2, 2)
    y = sparse.brandom(shape_y, block_shape_y, 0.3, format='bcoo').transpose(
        (2, 0, 1))
    y_d = y.todense()

    c = bcalc.einsum("ijk->kji", y)
    elemC = np.einsum("ijk->kji", y_d)
    assert_eq(elemC, c)

    c = bcalc.einsum("ijk->ijk", y)
    elemC = np.einsum("ijk->ijk", y_d)
    assert_eq(elemC, c)
Esempio n. 20
0
def test_getitem():
    s = sparse.brandom((4, 6, 8), (2, 3, 4), 0.5, format='bdok')
    x = s.todense()
    x_b = s.to_bumpy()
    shape = (2, 2, 2)

    #x = np.array([[1,-1,0,0],[1,-1,0,0],[2,2,3,3],[2,2,3,3]])
    #s = BDOK(x, (2, 2))
    #x_b = s.to_bumpy()
    #shape = (2,2)

    for _ in range(s.nnz):
        idx = np.random.randint(np.prod(shape))
        idx = np.unravel_index(idx, shape)

        assert np.allclose(s[idx], x_b[idx])
Esempio n. 21
0
def test_block_svd():

    #np.set_printoptions(3, linewidth = 1000, suppress = True)
    np.set_printoptions(2, linewidth=1000, suppress=False)
    x = sparse.brandom((16, 8), (2, 2), 0.3, format='bcoo')
    '''
    a = np.zeros((8, 4))
    a[0:2, 2:4] = np.arange(1, 5).reshape((2, 2))
    a[4:8, 0:2] = np.arange(1, 9).reshape((4, 2))
    x = BCOO.from_numpy(a, block_shape = (2, 2)) 
    '''
    y = x.todense()
    u, sigma, vt = bcore.block_svd(x)

    xnew = bcalc.einsum("ij,jk,kl->il", u, sigma, vt)

    assert np.allclose(x.todense(), xnew.todense())

    u_d = u.todense()
    vt_d = vt.todense()

    u_np, sigma_np, vt_np = np.linalg.svd(y, full_matrices=True)

    print "u sp"
    print u_d
    print "vt sp"
    print vt_d
    print sigma_np
    print np.sqrt(y.T.dot(y).dot(vt_np.T) / (vt_np.T))
    print "u np"
    print u_np
    print "vt np"
    print vt_np
    print "uT A v"
    print u_d.T.dot(y.dot(vt_d.T))
    print sigma.todense()
    print sigma.coords
Esempio n. 22
0
def test_einsum_shape_error():
    # test for shape error while outer_shape is ok
    shape_x = (4, 2, 2)
    block_shape_x = (2, 2, 2)
    x = sparse.brandom(shape_x, block_shape_x, 0.5, format='bcoo')
    x_d = x.todense()

    shape_y = (1, 1)
    block_shape_y = (1, 1)
    y = sparse.brandom(shape_y, block_shape_y, 0.5, format='bcoo')
    y_d = y.todense()

    shape_z = (2, 1)
    block_shape_z = (2, 1)
    z = sparse.brandom(shape_z, block_shape_z, 0.5, format='bcoo')
    z_d = z.todense()

    #FIXME:
    with pytest.raises(RuntimeError):
        c = bcalc.einsum('kxy,yz,zx->k', x, y, z)

    # test for block shape error
    shape_x = (4, 2, 2)
    block_shape_x = (2, 2, 2)
    x = sparse.brandom(shape_x, block_shape_x, 0.5, format='bcoo')
    x_d = x.todense()

    shape_y = (2, 2)
    block_shape_y = (1, 1)
    y = sparse.brandom(shape_y, block_shape_y, 0.5, format='bcoo')
    y_d = y.todense()

    shape_z = (2, 2)
    block_shape_z = (2, 1)
    z = sparse.brandom(shape_z, block_shape_z, 0.5, format='bcoo')
    z_d = z.todense()

    #FIXME:
    with pytest.raises(ValueError):
        c = bcalc.einsum('kxy,yz,zx->k', x, y, z)
Esempio n. 23
0
def dot1(shape_x, block_shape_x, shape_y, block_shape_y):
    x = sparse.brandom(shape_x, block_shape_x, .3, format='bcoo')
    y = sparse.brandom(shape_y, block_shape_y, .3, format='bcoo')
    c = bcalc.einsum("ij,pjk->pik", x, y, DEBUG=False)
Esempio n. 24
0
def test_convert_to_numpy():
    s = sparse.brandom((4, 6, 8), (2, 3, 4), 0.5, format='bdok')
    x = s.todense()

    assert_eq(x, s)
Esempio n. 25
0
def test_convert_from_coo():
    s1 = sparse.brandom((6, 6, 12), (2, 2, 3), 0.5, format='bcoo')
    s2 = BDOK(s1)

    assert_eq(s1, s2)
Esempio n. 26
0
def test_convert_to_coo():
    s1 = sparse.brandom((4, 6, 8), (2, 3, 4), 0.5, format='bdok')
    s2 = sparse.BCOO(s1)

    assert_eq(s1, s2)
Esempio n. 27
0
def test_transpose(axis):
    x = sparse.brandom((6, 2, 4), (2, 2, 2), density=0.3)
    y = x.todense()
    xx = x.transpose(axis)
    yy = y.transpose(axis)
    assert_eq(xx, yy)
Esempio n. 28
0
def test_slicing(index):
    s = sparse.brandom((4, 9, 16), (2, 3, 4), density=0.5)
    x = s.todense()

    assert_eq(x[index], s[index])
Esempio n. 29
0
#            c *= beta
#        c += ab
#    return c

if __name__ == '__main__':

    data_x = np.arange(1, 7).repeat(4).reshape((-1, 2, 2))
    coords_x = np.array([[0, 0, 0, 2, 1, 2], [0, 1, 1, 0, 2, 2]])
    shape_x = (8, 6)
    block_shape_x = (2, 2)
    x = BCOO(coords_x, data=data_x, shape=shape_x, block_shape=block_shape_x)
    x_d = x.todense()

    shape_y = (8, 4, 6)
    block_shape_y = (2, 2, 2)
    y = sparse.brandom(shape_y, block_shape_y, 0.5, format='bcoo')
    y_d = y.todense()

    c = einsum("ij,ikj->k", x, y, DEBUG=True)
    elemC = np.einsum("ij,ikj->k", x_d, y_d)

    # another test
    '''
    shape_x = (8,4,9)
    block_shape_x = (1,2,3)
    x = sparse.brandom(shape_x, block_shape_x, 0.2, format='bcoo')
    x_d = x.todense()
    
    shape_y = (9,4,6)
    block_shape_y = (3,2,2)
    y = sparse.brandom(shape_y, block_shape_y, 0.5, format='bcoo')
Esempio n. 30
0
def test_invalid_shape_error():
    with pytest.raises(RuntimeError):
        sparse.brandom((3, 4), block_shape=(2, 3), format='bcoo')