Esempio n. 1
0
def test_broadcast():
    a = np.array([[1, 2, 0, 0], [0, 3, 0, 0], [4, 5, 6, 0], [8, 0, 9, 0]])
    b = np.broadcast_to(a, (3, 4, 4))
    x = BCOO.from_numpy(a, block_shape=(2, 2))
    y = x.broadcast_to((3, 4, 4), (3, 2, 2))
    assert_eq(b, y)

    a = np.random.random((6, 5, 1, 4, 1))
    a[a > 0.3] = 0.0
    b = np.broadcast_to(a, (4, 6, 5, 3, 4, 4))
    x = BCOO.from_numpy(a, block_shape=(3, 5, 1, 2, 1))
    y = x.broadcast_to((4, 6, 5, 3, 4, 4), (2, 3, 5, 3, 2, 1))
    assert_eq(b, y)
Esempio n. 2
0
def test_from_numpy():
    #a = np.random.random((6,5,4,1))
    #a = np.zeros((6,5,4,1))
    a = np.array([[1, 2, 0, 0], [0, 3, 0, 0], [4, 5, 6, 0], [8, 0, 9, 0]])
    #x = BCOO.from_numpy(a, block_shape = (2,5,2,1))
    x = BCOO.from_numpy(a, block_shape=(2, 2))
    assert_eq(a, x)
Esempio n. 3
0
def test_to_coo():
    a = np.random.random((6, 5, 4, 1))
    a[a > 0.3] = 0.0
    #a = np.zeros((6,5,4,1))
    x = BCOO.from_numpy(a, block_shape=(2, 5, 2, 1))
    from sparse import COO
    y = COO.from_numpy(a)
    z = x.to_coo()
    assert_eq(y, z)
Esempio n. 4
0
def test_transpose(axes):
    #x = sparse.brandom((2, 3, 4),  ,density=.25)
    #x = sparse.brandom((4, 6, 8), (2, 3, 4), 0.5, format='bcoo')
    #x = sparse.brandom((4, 4), (2, 2), 1.0, format='bcoo')
    a = np.array([[1, -1, 0, 0], [1, -1, 0, 0], [2, 3, 6, 7], [4, 5, 8, 9]])
    x = BCOO.from_numpy(a, block_shape=(2, 2))
    y = x.todense()

    xx = x.transpose(axes)
    yy = y.transpose(axes)

    assert_eq(xx, yy)
Esempio n. 5
0
def test_add_zero():
    # the result is zero
    data_x = np.arange(3, 6).repeat(4).reshape(3, 2, 2).astype(np.double)
    coords_x = np.array([[1, 1, 0], [0, 1, 1]])
    x = BCOO(coords_x, data=data_x, shape=(4, 4), block_shape=(2, 2))
    x_d = x.todense()
    y = -x
    y_d = y.todense()
    z = x + y
    z_d = x_d + y_d
    assert_eq(z, z_d)

    # all add numbers are zero
    a = np.zeros((6, 5, 4, 1), dtype=np.complex)
    x = BCOO.from_numpy(a, block_shape=(2, 5, 2, 1))
    x_d = x.todense()
    y = BCOO.from_numpy(a, block_shape=(2, 5, 2, 1))
    y_d = y.todense()
    z = x + y
    z_d = x_d + y_d
    assert_eq(z, z_d)
Esempio n. 6
0
def test_block_reshape():

    a = np.array([[1, -1, 0, 0], [1, -1, 0, 0], [2, 3, 6, 7], [4, 5, 8, 9]])
    x = BCOO.from_numpy(a, block_shape=(2, 2))
    y = x.todense()

    outer_shape_new = (1, 4)
    block_shape_new = (2, 2)  # unchanged
    z = x.block_reshape(outer_shape_new, block_shape_new)

    print("original matrix (2,2)")
    print(y)
    print("block reshaped matrix (1,4)")
    print(z.todense())
Esempio n. 7
0
def test_sizeof():
    import sys
    x = np.eye(100)
    y = BCOO.from_numpy(x, block_shape=(5, 5))
    nb = sys.getsizeof(y)
    assert 400 < nb < x.nbytes / 10
Esempio n. 8
0
def test_from_numpy():
    #a = np.random.random((6,5,4,1))
    a = np.zeros((6, 5, 4, 1))
    x = BCOO.from_numpy(a, block_shape=(2, 5, 2, 1))
    assert_eq(a, x)