def test_constant_add():
    """check sparsemax proposition 2"""
    z = np.random.uniform(low=-3, high=3, size=(100, 10))
    c = np.random.uniform(low=-3, high=3, size=(100, 1))

    np.testing.assert_almost_equal(sparsemax.forward(z + c),
                                   sparsemax.forward(z))
def test_permutation():
    """check sparsemax proposition 3"""
    z = np.random.uniform(low=-3, high=3, size=(100, 10))
    p = sparsemax.forward(z)

    for i in range(100):
        per = np.random.permutation(10)

        np.testing.assert_array_equal(
            sparsemax.forward(z[i, per].reshape(1, -1)), p[i,
                                                           per].reshape(1, -1))
def test_sparsemax_on_examples():
    """ check sparsemax on a harcoded examples"""
    twod_input_vector = np.array([[5, 3, 0], [2, 2.7, 0]])
    value_expected = np.array([[1, 0, 0],
                               [((2 + 1) - 2.7) / 2, ((2.7 + 1) - 2) / 2, 0]])

    output_value = sparsemax.forward(twod_input_vector)
    np.testing.assert_almost_equal(output_value, value_expected)
def test_two_dimentional():
    """check two dimentation sparsemax case"""
    t = np.linspace(-2, 2, 100)
    z = np.vstack([t, np.zeros(100)]).T

    p = sparsemax.forward(z)
    p0_expected = np.select([t < -1, t <= 1, t > 1], [0, (t + 1) / 2, 1])

    np.testing.assert_almost_equal(p[:, 0], p0_expected)
    np.testing.assert_almost_equal(p[:, 1], 1 - p0_expected)
Esempio n. 5
0
def test_zero_loss():
    """check sparsemax-loss proposition 5"""
    # construct z and q, such that z_k >= 1 + max_{j!=k} z_k holds for
    # delta_0 = 1.
    z = np.random.uniform(low=-3, high=3, size=(100, 10))
    z[:, 0] = np.max(z, axis=1) + 1.05

    q = np.zeros((100, 10))
    q[:, 0] = 1

    np.testing.assert_almost_equal(sparsemax_loss.forward(z, q), 0)

    np.testing.assert_almost_equal(sparsemax.forward(z), q)
def test_two_dimentional_jacobian():
    """check two dimentation sparsemax jacobian against approiximation"""
    t = np.linspace(-2, 2, 100)
    z = np.vstack([t, np.zeros(100)]).T

    Jacobian_approx = numdifftools.Jacobian(
        lambda z_i: sparsemax.forward(z_i[np.newaxis, :])[0])

    jacobian_exact = sparsemax.jacobian(z)

    for i, z_i in enumerate(z):
        with warnings.catch_warnings(record=True) as w:
            # numdifftools causes a warning, a better filter could be made
            np.testing.assert_almost_equal(jacobian_exact[i, :, :],
                                           Jacobian_approx(z_i))
def test_diffrence():
    """check sparsemax proposition 4"""
    z = np.random.uniform(low=-3, high=3, size=(100, 10))
    p = sparsemax.forward(z)

    for val in range(0, 100):
        for i in range(0, 10):
            for j in range(0, 10):
                # check condition, the obesite pair will be checked anyway
                if z[val, i] > z[val, j]:
                    continue

                assert_true(
                    0 <= p[val, j] - p[val, i] <= z[val, j] - z[val, i] + 1e-9,
                    "0 <= %.10f <= %.10f" %
                    (p[val, j] - p[val, i], z[val, j] - z[val, i]))
def test_sparsemax_of_inf():
    """check sparsemax proposition 1, part 2"""
    z = np.random.uniform(low=-3, high=3, size=(100, 10))

    # assume |A(z)| = 1, as z is continues random
    z_sort_arg = np.argsort(z, axis=1)[:, ::-1]
    z_sort = np.sort(z, axis=-1)[:, ::-1]
    gamma_z = z_sort[:, 0] - z_sort[:, 1]
    epsilon = (0.99 * gamma_z * 1).reshape(-1, 1)

    # construct the expected 1_A(z) array
    p_expected = np.zeros((100, 10))
    p_expected[np.arange(0, 100), z_sort_arg[:, 0]] = 1

    np.testing.assert_almost_equal(sparsemax.forward((1 / epsilon) * z),
                                   p_expected)
Esempio n. 9
0
def forward(z, q):
    """Calculates the sparsemax loss function

    this will process a 2d-array $z$, where axis 1 (each row) is assumed to be
    the the z-vector. q is a binary matrix of same shape, containing the labels
    """

    # Calculate q^T * z
    z_k = np.sum(q * z, axis=1)

    # calculate sum over S(z)
    p = sparsemax.forward(z)
    s = p > 0
    # z_i^2 - tau(z)^2 = p_i (2 * z_i - p_i) for i \in S(z)
    S_sum = np.sum(s * p * (2 * z - p), axis=1)

    # because q is binary, sum([q_1^2, q_2^2, ...]) is just sum(q)
    q_norm = np.sum(q, axis=1)

    return -z_k + 0.5 * S_sum + 0.5 * q_norm
Esempio n. 10
0
 def predict(self, x):
     return sparsemax.forward(np.dot(x, self.W) + self.b)
def test_sparsemax_of_zero():
    """check sparsemax proposition 1, part 1"""
    z = np.zeros((1, 10))

    np.testing.assert_array_equal(sparsemax.forward(z),
                                  np.ones_like(z) / z.size)
Esempio n. 12
0
def grad(z, q):
    return -q + sparsemax.forward(z)