Esempio n. 1
0
    def run(self):
        """
    Generate the database.
    """
        from axialdisp_soln import AnalyticalSoln
        soln = AnalyticalSoln()

        from spatialdata.geocoords.CSCart import CSCart
        cs = CSCart()
        cs.inventory.spaceDim = 3
        cs._configure()

        from spatialdata.spatialdb.SimpleIOAscii import SimpleIOAscii
        io = SimpleIOAscii()

        for component in ["x", "y", "z"]:
            if component == "x":
                xyz = numpy.array([[-40.0e+3, 0.0, 0.0], [+40.0e+3, 0.0, 0.0]],
                                  dtype=numpy.float64)
                ic = 0
            elif component == "y":
                xyz = numpy.array([[0.0, -40.0e+3, 0.0], [0.0, +40.0e+3, 0.0]],
                                  dtype=numpy.float64)
                ic = 1
            elif component == "z":
                xyz = numpy.array([[0.0, 0.0, -40.0e+3], [0.0, 0.0, 0.0]],
                                  dtype=numpy.float64)
                ic = 2
            disp = soln.displacement(xyz)

            io.inventory.filename = "axial_disp%s.spatialdb" % component
            io._configure()
            data = {
                'points':
                xyz,
                'coordsys':
                cs,
                'data_dim':
                1,
                'values': [
                    {
                        'name': "displacement-%s" % component,
                        'units': "m",
                        'data': numpy.ravel(disp[0, :, ic])
                    },
                ]
            }
            io.write(data)

        return
def generate(sim, fileRoot, materials):

    for material in materials:

        filenameH5 = "../output/%s-%s.h5" % (sim, material)
        filenameDB = "%s-%s.spatialdb" % (fileRoot, material)

        # Open HDF5 file and get coordinates, cells, and stress.
        h5 = h5py.File(filenameH5, "r")
        vertices = h5['geometry/vertices'][:]
        cells = numpy.array(h5['topology/cells'][:], dtype=numpy.int)

        # Get stresses from final time step.
        stress = h5['cell_fields/stress'][-1,:,:]
        h5.close()

        # Compute coordinates of quadrature points.
        quadCoords = getCellCenters(vertices, cells)

        # Create writer for spatial database file
        writer = SimpleIOAscii()
        writer.inventory.filename = filenameDB
        writer._configure()
  
        values = [{'name': "stress-xx",
                   'units': "Pa",
                   'data': stress[:,0]},
                  {'name': "stress-yy",
                   'units': "Pa",
                   'data': stress[:,1]},
                  {'name': "stress-zz",
                   'units': "Pa",
                   'data': stress[:,2]},
                  {'name': "stress-xy",
                   'units': "Pa",
                   'data': stress[:,3]},
                  {'name': "stress-yz",
                   'units': "Pa",
                   'data': stress[:,4]},
                  {'name': "stress-xz",
                  'units': "Pa",
                   'data': stress[:,5]},
        ]
  
        writer.write({'points': quadCoords,
                      'coordsys': cs,
                      'data_dim': 3,
                      'values': values})

    return
Esempio n. 3
0
    def run(self):
        """
    Generate the database.
    """
        # Domain
        dx = 200.0
        x = numpy.arange(-1000.0, 1000.1, dx)
        y = numpy.arange(-1000.0, 0.1, dx)
        nptsx = x.shape[0]
        nptsy = y.shape[0]

        xx = x * numpy.ones((nptsy, 1), dtype=numpy.float64)
        yy = y * numpy.ones((nptsx, 1), dtype=numpy.float64)
        xy = numpy.zeros((nptsx * nptsy, 2), dtype=numpy.float64)
        xy[:, 0] = numpy.ravel(xx)
        xy[:, 1] = numpy.ravel(numpy.transpose(yy))

        from shearrotate_soln import AnalyticalSoln
        soln = AnalyticalSoln()
        disp = soln.displacement(xy)

        from spatialdata.geocoords.CSCart import CSCart
        cs = CSCart()
        cs.inventory.spaceDim = 2
        cs._configure()
        data = {
            'points':
            xy,
            'coordsys':
            cs,
            'data_dim':
            2,
            'values': [{
                'name': "displacement-x",
                'units': "m",
                'data': numpy.ravel(disp[0, :, 0])
            }, {
                'name': "displacement-y",
                'units': "m",
                'data': numpy.ravel(disp[0, :, 1])
            }]
        }

        from spatialdata.spatialdb.SimpleIOAscii import SimpleIOAscii
        io = SimpleIOAscii()
        io.inventory.filename = "shearrotate_disp.spatialdb"
        io._configure()
        io.write(data)
        return
Esempio n. 4
0
  def run(self):
    """
    Generate the database.
    """
    # Domain
    x = numpy.arange(-4000.0, 4000.1, 1000.0)
    y = numpy.arange(-4000.0, 4000.1, 1000.0)
    z = numpy.arange(-6000.0, 0000.1, 1000.0)
    nptsX = x.shape[0]
    nptsY = y.shape[0]
    nptsZ = z.shape[0]

    xx = x * numpy.ones( (nptsY*nptsZ, 1), dtype=numpy.float64)
    yy0 = y * numpy.ones( (nptsZ, 1), dtype=numpy.float64)
    yy = yy0.ravel() * numpy.ones( (nptsX, 1), dtype=numpy.float64)
    zz = z * numpy.ones( (nptsX*nptsY, 1), dtype=numpy.float64)
    xyz = numpy.zeros( (nptsX*nptsY*nptsZ, 3), dtype=numpy.float64)
    xyz[:,0] = numpy.ravel(xx)
    xyz[:,1] = numpy.ravel(numpy.transpose(yy))
    xyz[:,2] = numpy.ravel(numpy.transpose(zz))

    from rigidbody_soln import AnalyticalSoln
    soln = AnalyticalSoln()
    disp = soln.displacement(xyz)

    from spatialdata.geocoords.CSCart import CSCart
    cs = CSCart()
    cs.inventory.spaceDim = 3
    cs._configure()
    data = {'locs': xyz,
            'coordsys': cs,
            'data_dim': 2,
            'values': [{'name': "displacement-x",
                        'units': "m",
                        'data': numpy.ravel(disp[:,0])},
                       {'name': "displacement-y",
                        'units': "m",
                        'data': numpy.ravel(disp[:,1])},
                       {'name': "displacement-z",
                        'units': "m",
                        'data': numpy.ravel(disp[:,2])}]}

    from spatialdata.spatialdb.SimpleIOAscii import SimpleIOAscii
    io = SimpleIOAscii()
    io.inventory.filename = "rigidbody_disp.spatialdb"
    io._configure()
    io.write(data)
    return
Esempio n. 5
0
  def run(self):
    """
    Generate the database.
    """
    # Domain
    x = numpy.arange(-4000.0, 4000.1, 500.0)
    y = numpy.arange(-4000.0, 4000.1, 500.0)
    z = numpy.arange(-6000.0,    0.1, 500.0)
    nxpts = x.shape[0]
    nypts = y.shape[0]
    nzpts = z.shape[0]

    xx = numpy.tile(x, (1,nypts*nzpts))
    yy = numpy.tile(y, (nxpts,nzpts)).transpose()
    zz = numpy.tile(z, (nxpts*nypts,1)).transpose()

    xyz = numpy.zeros( (nxpts*nypts*nzpts, 3), dtype=numpy.float64)
    xyz[:,0] = numpy.ravel(xx)
    xyz[:,1] = numpy.ravel(yy)
    xyz[:,2] = numpy.ravel(zz)

    from axialdisp_soln import AnalyticalSoln
    soln = AnalyticalSoln()
    disp = soln.displacement(xyz)

    from spatialdata.geocoords.CSCart import CSCart
    cs = CSCart()
    cs.inventory.spaceDim = 3
    cs._configure()
    data = {'points': xyz,
            'coordsys': cs,
            'data_dim': 3,
            'values': [{'name': "displacement-x",
                        'units': "m",
                        'data': numpy.ravel(disp[:,0])},
                       {'name': "displacement-y",
                        'units': "m",
                        'data': numpy.ravel(disp[:,1])},
                       {'name': "displacement-z",
                        'units': "m",
                        'data': numpy.ravel(disp[:,2])}]}

    from spatialdata.spatialdb.SimpleIOAscii import SimpleIOAscii
    io = SimpleIOAscii()
    io.inventory.filename = "axial_disp.spatialdb"
    io._configure()
    io.write(data)
    return
Esempio n. 6
0
    def run(self):
        """
    Generate the database.
    """
        # Domain
        x = numpy.arange(-4000.0, 4000.1, 500.0)
        y = numpy.arange(-4000.0, 4000.1, 500.0)
        npts = x.shape[0]

        xx = x * numpy.ones((npts, 1), dtype=numpy.float64)
        yy = y * numpy.ones((npts, 1), dtype=numpy.float64)
        xy = numpy.zeros((npts**2, 2), dtype=numpy.float64)
        xy[:, 0] = numpy.ravel(xx)
        xy[:, 1] = numpy.ravel(numpy.transpose(yy))

        disp = self.soln.displacement(xy)

        from spatialdata.geocoords.CSCart import CSCart
        cs = CSCart()
        cs.inventory.spaceDim = 2
        cs._configure()
        data = {
            'points':
            xy,
            'coordsys':
            cs,
            'data_dim':
            2,
            'values': [{
                'name': "displacement-x",
                'units': "m",
                'data': numpy.ravel(disp[0, :, 0])
            }, {
                'name': "displacement-y",
                'units': "m",
                'data': numpy.ravel(disp[0, :, 1])
            }]
        }

        from spatialdata.spatialdb.SimpleIOAscii import SimpleIOAscii
        io = SimpleIOAscii()
        io.inventory.filename = self.filename
        io._configure()
        io.write(data)
        return
Esempio n. 7
0
  def run(self):
    """
    Generate the database.
    """
    from sheardisp_soln import AnalyticalSoln
    soln = AnalyticalSoln()

    from spatialdata.geocoords.CSCart import CSCart
    cs = CSCart()
    cs.inventory.spaceDim = 3
    cs._configure()

    from spatialdata.spatialdb.SimpleIOAscii import SimpleIOAscii
    io = SimpleIOAscii()

    for component in ["x","y","z"]:
      if component == "y":
        xyz = numpy.array([[-40.0e+3, 0.0, 0.0],
                           [+40.0e+3, 0.0, 0.0]], dtype=numpy.float64)
        ic = 1
      elif component == "x":
        xyz = numpy.array([[0.0, -40.0e+3, 0.0],
                           [0.0, +40.0e+3, 0.0]], dtype=numpy.float64)
        ic = 0
      elif component == "z":
        xyz = numpy.array([[0.0, 0.0, -40.0e+3],
                           [0.0, 0.0,   0.0]], dtype=numpy.float64)
        ic = 2
      disp = soln.displacement(xyz)

      io.inventory.filename = "shear_disp%s.spatialdb" % component
      io._configure()
      data = {'points': xyz,
              'coordsys': cs,
              'data_dim': 1,
              'values': [{'name': "displacement-%s" % component,
                          'units': "m",
                          'data': numpy.ravel(disp[0,:,ic])},
                         ]}
      io.write(data)
    
    return
Esempio n. 8
0
    def run(self):
        """
    Generate the database.
    """
        # Domain
        x = numpy.arange(-4000.0, 4000.1, 1000.0)
        y = numpy.arange(-4000.0, 4000.1, 1000.0)
        npts = x.shape[0]

        xx = x * numpy.ones((npts, 1), dtype=numpy.float64)
        yy = y * numpy.ones((npts, 1), dtype=numpy.float64)
        xy = numpy.zeros((npts ** 2, 2), dtype=numpy.float64)
        xy[:, 0] = numpy.ravel(xx)
        xy[:, 1] = numpy.ravel(numpy.transpose(yy))

        from sheardisp_soln import AnalyticalSoln

        soln = AnalyticalSoln()
        disp = soln.displacement(xy)

        from spatialdata.geocoords.CSCart import CSCart

        cs = CSCart()
        cs.inventory.spaceDim = 2
        cs._configure()
        data = {
            "points": xy,
            "coordsys": cs,
            "data_dim": 2,
            "values": [
                {"name": "displacement-x", "units": "m", "data": numpy.ravel(disp[0, :, 0])},
                {"name": "displacement-y", "units": "m", "data": numpy.ravel(disp[0, :, 1])},
            ],
        }

        from spatialdata.spatialdb.SimpleIOAscii import SimpleIOAscii

        io = SimpleIOAscii()
        io.inventory.filename = "shear_disp.spatialdb"
        io._configure()
        io.write(data)
        return
Esempio n. 9
0
  def run(self):
    """
    Generate the database.
    """
    # Domain
    dx = 200.0
    x = numpy.arange(-1000.0, 1000.1, dx)
    y = numpy.arange(-1000.0, 0.1, dx)
    nptsx = x.shape[0]
    nptsy = y.shape[0]

    xx = x * numpy.ones( (nptsy, 1), dtype=numpy.float64)
    yy = y * numpy.ones( (nptsx, 1), dtype=numpy.float64)
    xy = numpy.zeros( (nptsx*nptsy, 2), dtype=numpy.float64)
    xy[:,0] = numpy.ravel(xx)
    xy[:,1] = numpy.ravel(numpy.transpose(yy))

    from compressrotate_soln import AnalyticalSoln
    soln = AnalyticalSoln()
    disp = soln.displacement(xy)

    from spatialdata.geocoords.CSCart import CSCart
    cs = CSCart()
    cs.inventory.spaceDim = 2
    cs._configure()
    data = {'points': xy,
            'coordsys': cs,
            'data_dim': 2,
            'values': [{'name': "displacement-x",
                        'units': "m",
                        'data': numpy.ravel(disp[0,:,0])},
                       {'name': "displacement-y",
                        'units': "m",
                        'data': numpy.ravel(disp[0,:,1])}]}

    from spatialdata.spatialdb.SimpleIOAscii import SimpleIOAscii
    io = SimpleIOAscii()
    io.inventory.filename = "compressrotate_disp.spatialdb"
    io._configure()
    io.write(data)
    return
Esempio n. 10
0
  def run(self):
    """
    Generate the database.
    """
    # Domain
    x = numpy.arange(-4000.0, 4000.1, 500.0)
    y = numpy.arange(-4000.0, 4000.1, 500.0)
    npts = x.shape[0]

    xx = x * numpy.ones( (npts, 1), dtype=numpy.float64)
    yy = y * numpy.ones( (npts, 1), dtype=numpy.float64)
    xy = numpy.zeros( (npts**2, 2), dtype=numpy.float64)
    xy[:,0] = numpy.ravel(xx)
    xy[:,1] = numpy.ravel(numpy.transpose(yy))

    disp = self.soln.displacement(xy)

    from spatialdata.geocoords.CSCart import CSCart
    cs = CSCart()
    cs.inventory.spaceDim = 2
    cs._configure()
    data = {'points': xy,
            'coordsys': cs,
            'data_dim': 2,
            'values': [{'name': "displacement-x",
                        'units': "m",
                        'data': numpy.ravel(disp[0,:,0])},
                       {'name': "displacement-y",
                        'units': "m",
                        'data': numpy.ravel(disp[0,:,1])}]}

    from spatialdata.spatialdb.SimpleIOAscii import SimpleIOAscii
    io = SimpleIOAscii()
    io.inventory.filename = self.filename
    io._configure()
    io.write(data)
    return
Esempio n. 11
0
    def test_write(self):
        """
    Test write().
    """
        # Database info
        cs = CSCart()
        cs.initialize()

        filename = "data/test.spatialdb"
        data = {
            'points':
            numpy.array([[1.0, 2.0, 3.0], [0.5, 3.0, -3.0]], numpy.float64),
            'coordsys':
            cs,
            'data_dim':
            1,
            'values': [{
                'name': "One",
                'units': "m",
                'data': numpy.array([2.0, 8.0], numpy.float64)
            }, {
                'name': "Two",
                'units': "m",
                'data': numpy.array([-2.0, 3.0], numpy.float64)
            }]
        }
        dataDim = 1

        qlocs = numpy.array(
            [[0.875, 2.25, 1.5], [0.6, 2.8, -1.8], [1.0, 2.0, 3.0]],
            numpy.float64)
        valsE = numpy.array([[-0.75, 3.5], [2.0, 6.8], [-2.0, 2.0]],
                            numpy.float64)
        errE = [0, 0, 0]

        # Write database
        from spatialdata.spatialdb.SimpleIOAscii import SimpleIOAscii
        writer = SimpleIOAscii()
        writer.inventory.filename = filename
        writer._configure()
        writer.write(data)

        # Test write using query
        from spatialdata.spatialdb.SimpleDB import SimpleDB
        db = SimpleDB()
        db.inventory.label = "test"
        db.inventory.queryType = "linear"
        db.inventory.iohandler.inventory.filename = filename
        db.inventory.iohandler._configure()
        db._configure()

        db.open()
        db.queryVals(["two", "one"])
        vals = numpy.zeros(valsE.shape, dtype=numpy.float64)
        err = []
        nlocs = qlocs.shape[0]
        for i in xrange(nlocs):
            e = db.query(vals[i, :], qlocs[i, :], cs)
            err.append(e)
        db.close()

        self.assertEqual(len(valsE.shape), len(vals.shape))
        for dE, d in zip(valsE.shape, vals.shape):
            self.assertEqual(dE, d)
        for vE, v in zip(numpy.reshape(valsE, -1), numpy.reshape(vals, -1)):
            self.assertAlmostEqual(vE, v, 6)

        return
Esempio n. 12
0
            {
                'name': "viscous-strain-xx",
                'units': "None",
                'data': vstrain[:, 0]
            },
            {
                'name': "viscous-strain-yy",
                'units': "None",
                'data': vstrain[:, 1]
            },
            {
                'name': "viscous-strain-zz",
                'units': "None",
                'data': vstrain[:, 2]
            },
            {
                'name': "viscous-strain-xy",
                'units': "None",
                'data': vstrain[:, 3]
            },
        ]

    writer.write({
        'points': quadCoords,
        'coordsys': cs,
        'data_dim': 2,
        'values': values
    })

# End of file
Esempio n. 13
0
# Create coordinate system for spatial database
from spatialdata.geocoords.CSCart import CSCart
cs = CSCart()
cs._configure()
cs.setSpaceDim(2)

# Create writer for spatial database file
from spatialdata.spatialdb.SimpleIOAscii import SimpleIOAscii
writer = SimpleIOAscii()
writer.inventory.filename = "afterslip_tractions.spatialdb"
writer._configure()
writer.write({
    'points':
    vertices,
    'coordsys':
    cs,
    'data_dim':
    1,
    'values': [{
        'name': "traction-shear",
        'units': "Pa",
        'data': tractions_shear
    }, {
        'name': "traction-normal",
        'units': "Pa",
        'data': tractions_normal
    }]
})

# End of file
Esempio n. 14
0
             {'name': "total-strain-xx",
              'units': "None",
              'data': zeros},
             {'name': "total-strain-yy",
              'units': "None",
              'data': zeros},
             {'name': "total-strain-xy",
              'units': "None",
              'data': zeros},

             {'name': "viscous-strain-xx",
              'units': "None",
              'data': strainViscous[:,0]},
             {'name': "viscous-strain-yy",
              'units': "None",
              'data': strainViscous[:,1]},
             {'name': "viscous-strain-zz",
              'units': "None",
              'data': strainViscous[:,2]},
             {'name': "viscous-strain-xy",
              'units': "None",
              'data': strainViscous[:,3]},
        ]

writer.write({'points': cellCenters,
              'coordsys': cs,
              'data_dim': 0,
              'values': values})

# End of file
Esempio n. 15
0
tractionShearLL = maskO*-5.80*(1.0+numpy.cos(numpy.pi*(r-1400.0)/600.0)) + maskI*-11.60
tractionShearUD = 0*tractionShearLL
tractionNormal = 0*tractionShearLL

cs = CSCart()
cs._configure()
cs.initialize()

dataOut = {'points': points,
           'coordsys': cs,
           'data_dim': 1,
           'values': [{'name': 'traction-shear-leftlateral', 
                       'units': 'MPa',
                       'data': tractionShearLL},
                      {'name': 'traction-shear-updip', 
                       'units': 'MPa',
                       'data': tractionShearUD},
                      {'name': 'traction-normal', 
                       'units': 'MPa',
                       'data': tractionNormal},
                      ],
           }

writer = SimpleIOAscii()
writer.inventory.filename = "initial_traction.spatialdb"
writer._configure()
writer.write(dataOut)


# End of file
Esempio n. 16
0
File: gfgen.py Progetto: jjle/pylith
  def _makeSpatialdb(self):
    """
    Function to generate a set of spatial databases (one for each impulse).
    """

    # Create empty arrays for impulse values.
    # Only array1 will be modified.
    array1 = numpy.zeros( (self.numFaultVertices,), dtype=numpy.float64)
    array2 = numpy.zeros( (self.numFaultVertices,), dtype=numpy.float64)

    # Set up info for arrays that won't be modified.
    if (self.impulseType == "left-lateral-slip"):
      info2 = {'name': "fault-opening",
               'units': "m",
               'data': array2.flatten()}
      if (self.spaceDim == 3):
        info3 = {'name': "reverse-slip",
                 'units': "m",
                 'data': array2.flatten()}
    elif (self.impulseType == "fault-opening"):
      info2 = {'name': "left-lateral-slip",
               'units': "m",
               'data': array2.flatten()}
      if (self.spaceDim == 3):
        info3 = {'name': "reverse-slip",
                 'units': "m",
                 'data': array2.flatten()}
    elif (self.impulseType == "reverse-slip"):
      info2 = {'name': "left-lateral-slip",
               'units': "m",
               'data': array2.flatten()}
      info3 = {'name': "fault-opening",
               'units': "m",
               'data': array2.flatten()}

    # Create root output filename.
    suffIndex = self.spatialdbOutputRoot.rfind(".spatialdb")
    outputRoot = self.spatialdbOutputRoot
    if (suffIndex != -1):
      outputRoot = self.spatialdbOutputRoot[:suffIndex - 1]

    # Set data dimension.
    dataDim = self.spaceDim - 1
    
    # Loop over impulses to generate and modify the appropriate entries.
    for impulse in range(self.numFaultVertices):

      # Set filename
      impulseNum = int(impulse)
      impulseString = repr(impulseNum).rjust(self.impulseNumberWidth, '0')
      filename = outputRoot + "_i" + impulseString + ".spatialdb"
      writer = SimpleIOAscii()
      writer.inventory.filename = filename
      writer._configure()

      # Modify database values.
      array1[impulse] = self.impulseValue
      if (impulse > 0):
        array1[impulse - 1] = -self.impulseValue
      
      if (impulse > 1):
	array1[impulse - 2] = 0.0
      info1 = {'name': self.impulseType,
               'units': "m",
               'data': array1.flatten()}

      # Create data and write it to a database.
      if (self.spaceDim == 2):
        data = {'points': self.faultVertices,
                'coordsys': self.geometry.coordsys,
                'data_dim': dataDim,
                'values': [info1, info2]}
      else:
        data = {'points': self.faultVertices,
                'coordsys': self.geometry.coordsys,
                'data_dim': dataDim,
                'values': [info1, info2, info3]}

      writer.write(data)

    return
Esempio n. 17
0
def generate(sim, fileRoot, materials):

    for material in materials:

        filenameH5 = "../output/%s-%s.h5" % (sim, material)
        filenameDB = "%s-%s.spatialdb" % (fileRoot, material)

        # Open HDF5 file and get coordinates, cells, and stress.
        h5 = h5py.File(filenameH5, "r")
        vertices = h5['geometry/vertices'][:]
        cells = numpy.array(h5['topology/cells'][:], dtype=numpy.int)

        # Get stresses from final time step.
        stress = h5['cell_fields/stress'][-1, :, :]
        h5.close()

        # Compute coordinates of quadrature points.
        quadCoords = getCellCenters(vertices, cells)

        # Create writer for spatial database file
        writer = SimpleIOAscii()
        writer.inventory.filename = filenameDB
        writer._configure()

        values = [
            {
                'name': "stress-xx",
                'units': "Pa",
                'data': stress[:, 0]
            },
            {
                'name': "stress-yy",
                'units': "Pa",
                'data': stress[:, 1]
            },
            {
                'name': "stress-zz",
                'units': "Pa",
                'data': stress[:, 2]
            },
            {
                'name': "stress-xy",
                'units': "Pa",
                'data': stress[:, 3]
            },
            {
                'name': "stress-yz",
                'units': "Pa",
                'data': stress[:, 4]
            },
            {
                'name': "stress-xz",
                'units': "Pa",
                'data': stress[:, 5]
            },
        ]

        writer.write({
            'points': quadCoords,
            'coordsys': cs,
            'data_dim': 3,
            'values': values
        })

    return
Esempio n. 18
0
               {'name': "total-strain-xx",
                'units': "None",
                'data': zeros},
               {'name': "total-strain-yy",
                'units': "None",
                'data': zeros},
               {'name': "total-strain-xy",
                'units': "None",
                'data': zeros},
               
               {'name': "viscous-strain-xx",
              'units': "None",
                'data': vstrain[:,0]},
               {'name': "viscous-strain-yy",
                'units': "None",
                'data': vstrain[:,1]},
               {'name': "viscous-strain-zz",
                'units': "None",
                'data': vstrain[:,2]},
               {'name': "viscous-strain-xy",
                'units': "None",
                'data': vstrain[:,3]},
             ]

  writer.write({'points': quadCoords,
                'coordsys': cs,
                'data_dim': 2,
                'values': values})

# End of file
Esempio n. 19
0
  # Open HDF5 file and get coordinates, cells, and stress.
  h5 = h5py.File(filenameH5, "r")
  vertices = h5['geometry/vertices'][:]
  cells = numpy.array(h5['topology/cells'][:], dtype=numpy.int)
  stress = h5['cell_fields/stress'][0,:,:]
  h5.close()

  # Get cell centers for output.
  cellCoords = vertices[cells,:]
  cellCenters = numpy.mean(cellCoords, axis=1)

  # Create writer for spatial database file
  writer = SimpleIOAscii()
  writer.inventory.filename = filenameDB
  writer._configure()
  writer.write({'points': cellCenters,
              'coordsys': cs,
              'data_dim': 2,
              'values': [{'name': "stress-xx",
                          'units': "Pa",
                          'data': stress[:,0]},
                         {'name': "stress-yy",
                          'units': "Pa",
                          'data': stress[:,1]},
                         {'name': "stress-xy",
                          'units': "Pa",
                          'data': stress[:,2]},
                       ]})

Esempio n. 20
0
# Background shear tractions are reverse (in 2-D right-lateral is negative)
# because the normal tractions are negative.
tractions_bg_shear = coef_friction*tractions_bg_normal

# Combine traction changes and background tractions
tractions_shear = tractions_bg_shear + tractions_change[:,0]
tractions_normal = tractions_bg_normal + tractions_change[:,1]

# Create coordinate system for spatial database
from spatialdata.geocoords.CSCart import CSCart
cs = CSCart()
cs._configure()
cs.setSpaceDim(2)

# Create writer for spatial database file
from spatialdata.spatialdb.SimpleIOAscii import SimpleIOAscii
writer = SimpleIOAscii()
writer.inventory.filename = "afterslip_tractions.spatialdb"
writer._configure()
writer.write({'points': vertices,
              'coordsys': cs,
              'data_dim': 1,
              'values': [{'name': "traction-shear",
                          'units': "Pa",
                          'data': tractions_shear},
                         {'name': "traction-normal",
                          'units': "Pa",
                          'data': tractions_normal}]})

# End of file
Esempio n. 21
0
  def test_write(self):
    """
    Test write().
    """
    # Database info
    cs = CSCart()
    cs.initialize()

    filename = "data/test.spatialdb"
    data = {'points': numpy.array( [ [1.0, 2.0, 3.0],
                                   [0.5, 3.0, -3.0]], numpy.float64),
            'coordsys': cs,
            'data_dim': 1,
            'values': [{'name': "One",
                        'units': "m",
                        'data': numpy.array( [2.0, 8.0], numpy.float64)},
                       {'name': "Two",
                        'units': "m",
                        'data': numpy.array( [-2.0, 3.0], numpy.float64)}]}            
    dataDim = 1
            
    qlocs = numpy.array( [[0.875, 2.25, 1.5],
                          [0.6, 2.8, -1.8],
                          [1.0, 2.0, 3.0]],
                         numpy.float64)    
    valsE = numpy.array( [[-0.75, 3.5],
                          [2.0, 6.8],
                          [-2.0, 2.0]], numpy.float64)
    errE = [0, 0, 0]
  
  
    # Write database
    from spatialdata.spatialdb.SimpleIOAscii import SimpleIOAscii
    writer = SimpleIOAscii()
    writer.inventory.filename = filename
    writer._configure()
    writer.write(data)

    # Test write using query
    from spatialdata.spatialdb.SimpleDB import SimpleDB
    db = SimpleDB()
    db.inventory.label = "test"
    db.inventory.queryType = "linear"
    db.inventory.iohandler.inventory.filename = filename
    db.inventory.iohandler._configure()
    db._configure()

    db.open()
    db.queryVals(["two", "one"])
    vals = numpy.zeros(valsE.shape, dtype=numpy.float64)
    err = []
    nlocs = qlocs.shape[0]
    for i in xrange(nlocs):
      e = db.query(vals[i,:], qlocs[i,:], cs)
      err.append(e)
    db.close()    
    
    self.assertEqual(len(valsE.shape), len(vals.shape))
    for dE, d in zip(valsE.shape, vals.shape):
      self.assertEqual(dE, d)
    for vE, v in zip(numpy.reshape(valsE, -1), numpy.reshape(vals, -1)):
      self.assertAlmostEqual(vE, v, 6)

    return