Esempio n. 1
0
 def _fastpredict(self, jw, iw, set_threading=False):
     """ jw : jwant
         iw : iwant
     """
     mw = np.zeros_like(jw)
     vw = np.zeros_like(jw)
     for i, (jwant, iwant) in enumerate(zip(jw, iw)):
         if set_threading:
             covar = spear_threading(jwant, self.jd, iwant + 1, self.id + 1,
                                     **self.covparams)
         else:
             covar = spear(jwant, self.jd, iwant + 1, self.id + 1,
                           **self.covparams)
         cplusninvdotcovar = chosolve_from_tri(self.U,
                                               covar.T,
                                               nugget=None,
                                               inplace=False)
         if set_threading:
             vw[i] = spear_threading(jwant, jwant, iwant + 1, iwant + 1,
                                     **self.covparams)
         else:
             vw[i] = spear(jwant, jwant, iwant + 1, iwant + 1,
                           **self.covparams)
         mw[i] = np.dot(covar, self.cplusninvdoty)
         vw[i] = vw[i] - np.dot(covar, cplusninvdotcovar)
     return (mw, vw)
Esempio n. 2
0
 def _get_covmat(self, set_threading=False):
     if set_threading:
         self.cmatrix = spear_threading(self.jd, self.jd, self.id, self.id,
                                        **self.covparams)
     else:
         self.cmatrix = spear(self.jd, self.jd, self.id, self.id,
                              **self.covparams)
     print("covariance matrix calculated")
Esempio n. 3
0
    def generate(self, zylclist, set_threading=False) :
        """ Presumably zylclist has our input j, and e, and the values in m
        should be the mean.

        Parameters
        ----------
        zylclist: list of 3-list light curves
            Pre-simulated light curves in zylclist, with the values in m-column as
            the light curve mean, and those in e-column as the designated errorbar.

        Returns
        -------
        zylclist_new: list of 3-list light curves
            Simulated light curves in zylclist.

        """
        nlc_obs = len(zylclist)
        if nlc_obs != self.nlc_obs :
            raise RuntimeError("zylclist has unmatched nlc_obs with spearmode %s" % self.spearmode)
        jlist = []
        mlist = []
        elist = []
        ilist = []
        nptlist = []
        npt   = 0
        for ilc, lclist in enumerate(zylclist):
            if (len(lclist) == 3):
                jsubarr, msubarr, esubarr = [np.array(l) for l in lclist]
                if (np.min(msubarr) != np.max(msubarr)) :
                    print("WARNING: input zylclist has inequal m elements in light curve %d," +
                           "please make sure the m elements are filled with the desired mean" +
                           "of the mock light curves, now reset to zero"%ilc)
                    msubarr = msubarr * 0.0
                nptlc = len(jsubarr)
                # sort the date, safety
                p = jsubarr.argsort()
                jlist.append(jsubarr[p])
                mlist.append(msubarr[p])
                elist.append(esubarr[p])
                ilist.append(np.zeros(nptlc, dtype="int")+ilc+1) # again, starting at 1.
                npt += nptlc
                nptlist.append(nptlc)
        # collapse the list to one array
        jarr, marr, earr, iarr = self._combineddataarr(npt, nptlist, jlist, mlist, elist, ilist)
        # get covariance function
        if set_threading :
            if self.spearmode == "Rmap" :
                cmatrix = spear_threading(jarr, jarr, iarr  , iarr  , self.sigma, self.tau, self.lags, self.wids, self.scales, set_pmap=False)
            elif self.spearmode == "Pmap" :
                cmatrix = spear_threading(jarr, jarr, iarr  , iarr  , self.sigma, self.tau, self.lags, self.wids, self.scales, set_pmap=True)
            elif self.spearmode == "SPmap" :
                cmatrix = spear_threading(jarr, jarr, iarr+1, iarr+1, self.sigma, self.tau, self.lags, self.wids, self.scales, set_pmap=True)
        else :
            if self.spearmode == "Rmap" :
                cmatrix = spear(jarr, jarr, iarr  , iarr  , self.sigma, self.tau, self.lags, self.wids, self.scales, set_pmap=False)
            elif self.spearmode == "Pmap" :
                cmatrix = spear(jarr, jarr, iarr  , iarr  , self.sigma, self.tau, self.lags, self.wids, self.scales, set_pmap=True)
            elif self.spearmode == "SPmap" :
                cmatrix = spear(jarr, jarr, iarr+1, iarr+1, self.sigma, self.tau, self.lags, self.wids, self.scales, set_pmap=True)
        # cholesky decomposed cmatrix to L, for which a C array is desired.
        L = np.empty(cmatrix.shape, order='C')
        L[:] = cholesky2(cmatrix) # XXX without the error report.
        # generate gaussian deviates y
        y = multivariate_normal(np.zeros(npt), np.identity(npt))
        # get x = L * y + u, where u is the mean of the light curve(s)
        x = np.dot(L, y) + marr
        # generate errors
        # the way to get around peppering zeros is to generate deviates with unity std and multiply to earr.
        # XXX no covariance implemented here.
        e = earr * multivariate_normal(np.zeros(npt), np.identity(npt))
        # add e
        m = x + e
        # unpack the data
        _jlist, _mlist, _elist = self._unpackdataarr(npt, nptlist, jarr, m, earr, iarr)
        zylclist_new = []
        for ilc in xrange(self.nlc_obs) :
            zylclist_new.append([_jlist[ilc], _mlist[ilc], _elist[ilc]])
        return(zylclist_new)