def main():

    parser = optparse.OptionParser(usage="usage: %prog [options] directory")

    parser.add_option("--config", dest="config_file",
                      help="Configuration file name.",
                      type="string", default="config.json")
    parser.add_option("--no-output", action="store_true",
                      help="Do not create output files.")
    parser.add_option("--repeat", dest="repeat",
                      help="Used for repeating the same experiment many times.",
                      type="int", default="-1")

    (commandline_kwargs, args) = parser.parse_args()

    # Read in the config file
    #expt_dir = os.path.realpath('examples/cifar10')
    expt_dir  = os.path.realpath(args[0])
    if not os.path.isdir(expt_dir):
        raise Exception("Cannot find directory %s" % expt_dir)

    options = parse_config_file(expt_dir, commandline_kwargs.config_file)
    experiment_name = options["experiment-name"]

    # Special advanced feature for repeating the same experiment many times
    if commandline_kwargs.repeat >= 0:
        experiment_name = repeat_experiment_name(experiment_name, commandline_kwargs.repeat)

    if not commandline_kwargs.no_output: # if we want output
        if commandline_kwargs.repeat >= 0:
            output_directory = repeat_output_dir(expt_dir, commandline_kwargs.repeat)
        else:
            output_directory = os.path.join(expt_dir, 'output', options["experiment-name"])
        if not os.path.isdir(output_directory):
            os.mkdir(output_directory)

        if commandline_kwargs.repeat < 0:
            rootLogger = logging.getLogger()
            fileHandler = logging.FileHandler(os.path.join(output_directory, 'main.log'))
            fileHandler.setFormatter(logFormatter)
            fileHandler.setLevel(logLevel)
            rootLogger.addHandler(fileHandler)
        # consoleHandler = logging.StreamHandler()
        # consoleHandler.setFormatter(logFormatter)
        # consoleHandler.setLevel(logLevel)
        # rootLogger.addHandler(consoleHandler)
    else:
        output_directory = None

    input_space = InputSpace(options["variables"])

    resources = parse_resources_from_config(options)

    # Load up the chooser.
    chooser_module = importlib.import_module('spearmint.choosers.' + options['chooser'])

    chooser = chooser_module.init(input_space, options)

    # Connect to the database

    db_address = options['database']['address']
    db         = MongoDB(database_address=db_address)

    if os.getenv('SPEARMINT_MAX_ITERATIONS') == None and 'max_iterations' not in set(options.keys()):
	maxiterations = DEFAULT_MAX_ITERATIONS
    elif os.getenv('SPEARMINT_MAX_ITERATIONS') != None:
	maxiterations = int(os.getenv('SPEARMINT_MAX_ITERATIONS'))
    else:
	maxiterations = options['max_iterations']

    # Set random seed

    if 'random_seed' in options.keys():
	    np.random.seed(int(options['random_seed']))
	    seed(int(options['random_seed']))

    waiting_for_results = False  # for printing purposes only
    while True:

        for resource_name, resource in resources.iteritems():

            jobs = load_jobs(db, experiment_name)
            # resource.printStatus(jobs)

            # If the resource is currently accepting more jobs
            # TODO: here cost will eventually also be considered: even if the
            #       resource is not full, we might wait because of cost incurred
            # Note: I could chose to fill up one resource and them move on to the next ("if")
            # You could also do it the other way, by changing "if" to "while" here

            # Remove any broken jobs from pending
            # note: make sure to do this before the acceptingJobs() condition is checked
            remove_broken_jobs(db, jobs, experiment_name, resources)

            if resource.acceptingJobs(jobs):

                if waiting_for_results:
                    logging.info('\n')
                waiting_for_results = False

                optim_start_time = time.time()

                # Load jobs from DB
                # (move out of one or both loops?) would need to pass into load_tasks
                jobs = load_jobs(db, experiment_name)

                # Print out a list of broken jobs
                print_broken_jobs(jobs)

                # Get a suggestion for the next job
                tasks = parse_tasks_from_jobs(jobs, experiment_name, options, input_space)

                # Special case when coupled and there is a NaN task-- what to do with NaN task when decoupled??
                if 'NaN' in tasks and 'NaN' not in resource.tasks:
                    resource.tasks.append('NaN')

                # Load the model hypers from the database.
                hypers = db.load(experiment_name, 'hypers')

                # "Fit" the chooser - give the chooser data and let it fit the model(s).
                # NOTE: even if we are only suggesting for 1 task, we need to fit all of them
                # because the acquisition function for one task depends on all the tasks

                hypers = chooser.fit(tasks, hypers)

                if hypers:
                    logging.debug('GP covariance hyperparameters:')
                print_hypers(hypers)

                # Save the hyperparameters to the database.
                if hypers:
                    db.save(hypers, experiment_name, 'hypers')

                # Compute the best value so far, a.k.a. the "recommendation"

                recommendation = chooser.best()

                # Save the recommendation in the DB

                numComplete_by_task = {task_name : task.numComplete(jobs) for task_name, task in tasks.iteritems()}

                db.save({'num_complete' : resource.numComplete(jobs),
                     'num_complete_tasks' : numComplete_by_task,
                     'params'   : input_space.paramify(recommendation['model_model_input']),
                     'objective': recommendation['model_model_value'],
                     'params_o' : None if recommendation['obser_obser_input'] is None else input_space.paramify(recommendation['obser_obser_input']),
                     'obj_o'    : recommendation['obser_obser_value'],
                     'params_om': None if recommendation['obser_model_input'] is None else input_space.paramify(recommendation['obser_model_input']),
                     'obj_om'   : recommendation['obser_model_value']},
                experiment_name, 'recommendations', {'id' : len(jobs)})

                # Get the decoupling groups
                task_couplings = {task_name : tasks[task_name].options["group"] for task_name in resource.tasks}

                logging.info('\nGetting suggestion for %s...\n' % (', '.join(task_couplings.keys())))

                # Get the next suggested experiment from the chooser.

                suggested_input, suggested_tasks = chooser.suggest(task_couplings, optim_start_time)
                suggested_task = suggested_tasks[0] # hack, deal with later

                suggested_job = {
                    'id'          : len(jobs) + 1,
                    'params'      : input_space.paramify(suggested_input),
                    'expt_dir'    : options['main_file_path'],
                    'tasks'       : suggested_tasks,
                    'resource'    : resource_name,
                    'main-file'   : resource.main_file,
                    'language'    : options['tasks'][suggested_task]['language'],
                    'status'      : 'new',
                    'submit time' : time.time(),
                    'start time'  : None,
                    'end time'    : None
                }

                save_job(suggested_job, db, experiment_name)

                # Submit the job to the appropriate resource
                process_id = resource.attemptDispatch(experiment_name, suggested_job, db_address,
                                                      expt_dir, output_directory)

                # Print the current time
                logging.info('Current time: %s' % datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'))

                # Set the status of the job appropriately (successfully submitted or not)
                if process_id is None:
                    suggested_job['status'] = 'broken'
                    logging.info('Job %s failed -- check output file for details.' % job['id'])
                    save_job(suggested_job, db, experiment_name)
                else:
                    suggested_job['status'] = 'pending'
                    suggested_job['proc_id'] = process_id
                    save_job(suggested_job, db, experiment_name)

                jobs = load_jobs(db, experiment_name)

                # Print out the status of the resources
                # resource.printStatus(jobs)
                print_resources_status(resources.values(), jobs)

                if len(set(task_couplings.values())) > 1: # if decoupled
                    print_tasks_status(tasks.values(), jobs)

                # For debug - print pending jobs
                print_pending_jobs(jobs)


        # Terminate the optimization if all resources are finished (run max number of jobs)
        # or ANY task is finished (just my weird convention)
        if reduce(lambda x,y: x and y, map(lambda x: x.maxCompleteReached(jobs), resources.values()), True) or \
           reduce(lambda x,y: x or y,  map(lambda x: x.maxCompleteReached(jobs), tasks.values()),     False):
            # Do all this extra work just to save the final recommendation -- would be ok to delete everything
            # in here and just "return"
            sys.stdout.write('\n')
            jobs = load_jobs(db, experiment_name)
            tasks = parse_tasks_from_jobs(jobs, experiment_name, options, input_space)
            hypers = db.load(experiment_name, 'hypers')
            hypers = chooser.fit(tasks, hypers)
            if hypers:
                db.save(hypers, experiment_name, 'hypers')
            # logging.info('\n**All resources have run the maximum number of jobs.**\nFinal recommendation:')
            recommendation = chooser.best()

            # numComplete_per_task
            numComplete_by_task = {task_name : task.numComplete(jobs) for task_name, task in tasks.iteritems()}
            db.save({'num_complete'       : resource.numComplete(jobs),
                     'num_complete_tasks' : numComplete_by_task,
                     'params'   : input_space.paramify(recommendation['model_model_input']),
                     'objective': recommendation['model_model_value'],
                     'params_o' : None if recommendation['obser_obser_input'] is None else input_space.paramify(recommendation['obser_obser_input']),
                     'obj_o'    : recommendation['obser_obser_value'],
                     'params_om': None if recommendation['obser_model_input'] is None else input_space.paramify(recommendation['obser_model_input']),
                     'obj_om'   : recommendation['obser_model_value']},
                experiment_name, 'recommendations', {'id'       : len(jobs)})
            logging.info('Maximum number of jobs completed. Have a nice day.')
            return

        # If no resources are accepting jobs, sleep
        if no_free_resources(db, experiment_name, resources):
            # Don't use logging here because it's too much effort to use logging without a newline at the end
            sys.stdout.write('Waiting for results...' if not waiting_for_results else '.')
            sys.stdout.flush()
            # sys.stderr.flush()
            waiting_for_results = True
            time.sleep(options['polling_time'])
        else:
            sys.stdout.write('\n')
Esempio n. 2
0
def main(expt_dir, config_file="config.json", no_output=False, repeat=-1):
    if not os.path.isdir(expt_dir):
        raise Exception("Cannot find directory %s" % expt_dir)

    options = parse_config_file(expt_dir, config_file)
    experiment_name = options["experiment_name"]

    # Special advanced feature for repeating the same experiment many times
    if repeat >= 0:
        experiment_name = repeat_experiment_name(experiment_name, repeat)

    if not no_output:  # if we want output
        if repeat >= 0:
            output_directory = repeat_output_dir(expt_dir, repeat)
        else:
            output_directory = os.path.join(expt_dir, 'output')
        if not os.path.isdir(output_directory):
            os.mkdir(output_directory)

        if repeat < 0:
            rootLogger = logging.getLogger()
            fileHandler = logging.FileHandler(
                os.path.join(output_directory, 'main.log'))
            fileHandler.setFormatter(logFormatter)
            fileHandler.setLevel(logLevel)
            rootLogger.addHandler(fileHandler)
        # consoleHandler = logging.StreamHandler()
        # consoleHandler.setFormatter(logFormatter)
        # consoleHandler.setLevel(logLevel)
        # rootLogger.addHandler(consoleHandler)
    else:
        output_directory = None

    input_space = InputSpace(options["variables"])

    resources = parse_resources_from_config(options)

    # Load up the chooser.
    chooser_module = importlib.import_module('spearmint.choosers.' +
                                             options['chooser'])
    chooser = chooser_module.init(input_space, options)

    # Connect to the database
    db_address = options['database']['address']
    db = MongoDB(database_address=db_address)

    overall_start_time = time.time()
    db.save({'start-time': overall_start_time}, experiment_name, 'start-time')

    waiting_for_results = False  # for printing purposes only
    while True:

        for resource_name, resource in resources.iteritems():

            jobs = load_jobs(db, experiment_name)
            # resource.printStatus(jobs)

            # If the resource is currently accepting more jobs
            # TODO: here cost will eventually also be considered: even if the
            #       resource is not full, we might wait because of cost incurred
            # Note: I could chose to fill up one resource and them move on to the next ("if")
            # You could also do it the other way, by changing "if" to "while" here

            # Remove any broken jobs from pending
            # note: make sure to do this before the acceptingJobs() condition is checked
            remove_broken_jobs(db, jobs, experiment_name, resources)

            if resource.acceptingJobs(jobs):

                if waiting_for_results:
                    logging.info('\n')
                waiting_for_results = False

                # Load jobs from DB
                # (move out of one or both loops?) would need to pass into load_tasks
                jobs = load_jobs(db, experiment_name)

                # Print out a list of broken jobs
                print_broken_jobs(jobs)

                # Get a suggestion for the next job
                tasks = parse_tasks_from_jobs(jobs, experiment_name, options,
                                              input_space)

                # Special case when coupled and there is a NaN task-- what to do with NaN task when decoupled??
                if 'NaN' in tasks and 'NaN' not in resource.tasks:
                    resource.tasks.append('NaN')

                # Load the model hypers from the database.
                hypers = db.load(experiment_name, 'hypers')

                # "Fit" the chooser - give the chooser data and let it fit the model(s).
                # NOTE: even if we are only suggesting for 1 task, we need to fit all of them
                # because the acquisition function for one task depends on all the tasks
                hypers = chooser.fit(tasks, hypers)

                if hypers:
                    logging.debug('GP covariance hyperparameters:')
                print_hypers(hypers, input_space, options)
                # if 'duration hypers' in hypers:
                # logging.debug('Duration GP covariance hyperparameters:')
                # print_hypers(hypers['duration hypers'], input_space, options)

                # Save the hyperparameters to the database.
                if hypers:
                    db.save(hypers, experiment_name, 'hypers')

                if options['recommendations'] == "during":
                    # Compute the best value so far, a.k.a. the "recommendation"
                    recommendation = chooser.best()

                    # Save the recommendation in the DB if there are more complete jobs than last time
                    store_recommendation(recommendation, db, experiment_name,
                                         tasks, jobs, input_space,
                                         time.time() - overall_start_time)

                # Get the decoupling groups
                task_couplings = {
                    task_name: tasks[task_name].options["group"]
                    for task_name in resource.tasks
                }

                logging.info('\nGetting suggestion for %s...\n' %
                             (', '.join(task_couplings.keys())))

                # Get the next suggested experiment from the chooser.
                suggested_input, suggested_tasks = chooser.suggest(
                    task_couplings)
                suggested_task = suggested_tasks[0]  # hack, deal with later

                suggested_job = {
                    'id': len(jobs) + 1,
                    'params': input_space.paramify(suggested_input),
                    'expt_dir': options['main_file_path'],
                    'tasks': suggested_tasks,
                    'resource': resource_name,
                    'main-file': options['tasks'][suggested_task]['main_file'],
                    'language': options['tasks'][suggested_task]['language'],
                    'status': 'new',
                    'submit time': time.time(),
                    'start time': None,
                    'end time': None,
                    'fast update':
                    chooser.fast_update  # just for plotting - not important
                }

                save_job(suggested_job, db, experiment_name)

                # Submit the job to the appropriate resource
                process_id = resource.attemptDispatch(experiment_name,
                                                      suggested_job,
                                                      db_address, expt_dir,
                                                      output_directory)

                # Print the current time
                logging.info(
                    'Current time: %s' %
                    datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'))

                # Set the status of the job appropriately (successfully submitted or not)
                if process_id is None:
                    suggested_job['status'] = 'broken'
                    logging.info(
                        'Job %s failed -- check output file for details.' %
                        job['id'])
                    save_job(suggested_job, db, experiment_name)
                else:
                    suggested_job['status'] = 'pending'
                    suggested_job['proc_id'] = process_id
                    save_job(suggested_job, db, experiment_name)

                jobs = load_jobs(db, experiment_name)

                # Print out the status of the resources
                # resource.printStatus(jobs)
                print_resources_status(resources.values(), jobs)

                if len(set(task_couplings.values())) > 1:  # if decoupled
                    print_tasks_status(tasks.values(), jobs)

                # For debug - print pending jobs
                print_pending_jobs(jobs)

        # Terminate the optimization if all resources are finished (run max number of jobs)
        # or ANY task is finished (just my weird convention)
        jobs = load_jobs(db, experiment_name)
        tasks = parse_tasks_from_jobs(jobs, experiment_name, options,
                                      input_space)
        terminate_resources = reduce(
            lambda x, y: x and y,
            map(lambda x: x.maxCompleteReached(jobs), resources.values()),
            True)
        terminate_tasks = reduce(
            lambda x, y: x or y,
            map(lambda x: x.maxCompleteReached(jobs), tasks.values()), False)
        terminate_maxtime = (time.time() - overall_start_time) >= (
            options['max_time_mins'] * 60.0)

        if terminate_resources or terminate_tasks or terminate_maxtime:

            if terminate_resources:
                logging.info(
                    'Maximum number of jobs completed on all resources.')
            if terminate_tasks:
                logging.info(
                    'Maximum number of jobs reached for at least one task.')
            if terminate_maxtime:
                logging.info(
                    'Maximum total experiment time of %f minutes reached.' %
                    options['max_time_mins'])

            # save rec in DB
            if options['recommendations'] in ("during", "end-one"):
                logging.info('Making final recommendation:')
                recommendation = chooser.best()
                store_recommendation(recommendation,
                                     db,
                                     experiment_name,
                                     tasks,
                                     jobs,
                                     input_space,
                                     time.time() - overall_start_time,
                                     final=True)
            elif options['recommendations'] == "end-all":
                logging.info('Making recommendations...')
                all_jobs = jobs
                for i in xrange(len(all_jobs)):
                    logging.info('')
                    logging.info(
                        '-------------------------------------------------')
                    logging.info(
                        '     Getting recommendations for iter %d/%d      ' %
                        (i, len(all_jobs)))
                    logging.info(
                        '-------------------------------------------------')
                    logging.info('')

                    jobs = all_jobs[:i + 1]
                    tasks = parse_tasks_from_jobs(jobs, experiment_name,
                                                  options, input_space)
                    hypers = chooser.fit(tasks, hypers)
                    print_hypers(hypers, input_space, options)
                    # get the biggest end time of the jobs
                    end_time = max([job['end time'] for job in jobs])
                    elapsed_time = end_time - overall_start_time

                    recommendation = chooser.best()
                    store_recommendation(recommendation, db, experiment_name,
                                         tasks, jobs, input_space,
                                         elapsed_time)

            logging.info('Have a nice day.')
            return

        # If no resources are accepting jobs, sleep
        if no_free_resources(db, experiment_name, resources):
            # Don't use logging here because it's too much effort to use logging without a newline at the end
            sys.stdout.write(
                'Waiting for results...' if not waiting_for_results else '.')
            sys.stdout.flush()
            # sys.stderr.flush()
            waiting_for_results = True
            time.sleep(options['polling_time'])
        else:
            sys.stdout.write('\n')