Esempio n. 1
0
def test_backward_pass():
    npr.seed(1)

    eps = 1e-5
    N   = 15
    D   = 10

    data = 0.5*npr.rand(N,D)

    norm      = Normalization(3)
    norm_inds = [1,3,5]

    bw      = BetaWarp(2)
    bw_inds = [0,2]

    lin      = Linear(3)
    lin_inds = [6,8,9]

    t = Transformer(D)

    # Add a layer and test the gradient
    t.add_layer((norm, norm_inds), (bw, bw_inds), (lin, lin_inds))
    new_data = t.forward_pass(data)
    loss     = np.sum(new_data**2)
    V        = 2*new_data

    dloss = t.backward_pass(V)
    
    dloss_est = np.zeros(dloss.shape)
    for i in xrange(N):
        for j in xrange(D):
            data[i,j] += eps
            loss_1 = np.sum(t.forward_pass(data)**2)
            data[i,j] -= 2*eps
            loss_2 = np.sum(t.forward_pass(data)**2)
            data[i,j] += eps
            dloss_est[i,j] = ((loss_1 - loss_2) / (2*eps))

    assert np.linalg.norm(dloss - dloss_est) < 1e-6

    # Add a second layer and test the gradient
    t.add_layer(Linear(9))

    new_data = t.forward_pass(data)
    loss     = np.sum(new_data**2)
    V        = 2*new_data

    dloss = t.backward_pass(V)
    
    dloss_est = np.zeros(dloss.shape)
    for i in xrange(N):
        for j in xrange(D):
            data[i,j] += eps
            loss_1 = np.sum(t.forward_pass(data)**2)
            data[i,j] -= 2*eps
            loss_2 = np.sum(t.forward_pass(data)**2)
            data[i,j] += eps
            dloss_est[i,j] = ((loss_1 - loss_2) / (2*eps))

    assert np.linalg.norm(dloss - dloss_est) < 1e-6
Esempio n. 2
0
def test_forward_pass():
    npr.seed(1)

    N   = 15
    D   = 10

    data = 0.5*npr.rand(N,D)

    norm      = Normalization(3)
    norm_inds = [1,3,5]

    bw      = BetaWarp(2)
    bw_inds = [0,2]

    lin      = Linear(3)
    lin_inds = [6,8,9]

    t = Transformer(D)
    t.add_layer((norm, norm_inds), (bw, bw_inds), (lin, lin_inds))

    new_data = t.forward_pass(data)
    assert new_data.shape[1] == 9
    assert np.all(new_data[:,7:] == data[:,[4,7]])
    assert np.linalg.norm(new_data[:,0:3].sum(1) - 1) < 1e-10

    bw = BetaWarp(9)
    t.add_layer(bw)
Esempio n. 3
0
def test_backward_pass():
    npr.seed(1)

    eps = 1e-5
    N   = 10
    D   = 5

    lin = Linear(D)

    data = 0.5*npr.rand(N,D)
    new_data = lin.forward_pass(data)
    loss = np.sum(new_data**2)
    V    = 2*new_data

    dloss = lin.backward_pass(V)
    
    dloss_est = np.zeros(dloss.shape)
    for i in xrange(N):
        for j in xrange(D):
            data[i,j] += eps
            loss_1 = np.sum(lin.forward_pass(data)**2)
            data[i,j] -= 2*eps
            loss_2 = np.sum(lin.forward_pass(data)**2)
            data[i,j] += eps
            dloss_est[i,j] = ((loss_1 - loss_2) / (2*eps))

    assert np.linalg.norm(dloss - dloss_est) < 1e-6
Esempio n. 4
0
def test_construction():
    npr.seed(1)

    D   = 10

    norm      = Normalization(3)
    norm_inds = [1,3,5]

    bw      = BetaWarp(2)
    bw_inds = [0,2]

    lin      = Linear(3)
    lin_inds = [6,8,9]

    t = Transformer(D)
    t.add_layer((norm, norm_inds), (bw, bw_inds), (lin, lin_inds))
Esempio n. 5
0
def test_grad():
    npr.seed(1)

    eps = 1e-5
    N = 10
    M = 5
    D = 5

    beta_warp = BetaWarp(2)
    norm = Normalization(2)
    lin = Linear(D)
    transformer = Transformer(D)
    # Each entry is a tuple, (transformation, indices_it_acts_on)
    transformer.add_layer(
        (beta_warp, [0, 2]),
        (norm, [1, 4]))  # This is crazy. We would never do this.
    # One transformation means apply to all dimensions.
    transformer.add_layer(lin)

    kernel = TransformKernel(Matern52(lin.num_factors), transformer)

    data1 = npr.rand(N, D)
    data2 = npr.rand(M, D)

    loss = np.sum(kernel.cross_cov(data1, data2))
    dloss = kernel.cross_cov_grad_data(data1, data2).sum(0)

    dloss_est = np.zeros(dloss.shape)
    for i in xrange(M):
        for j in xrange(D):
            data2[i, j] += eps
            loss_1 = np.sum(kernel.cross_cov(data1, data2))
            data2[i, j] -= 2 * eps
            loss_2 = np.sum(kernel.cross_cov(data1, data2))
            data2[i, j] += eps
            dloss_est[i, j] = ((loss_1 - loss_2) / (2 * eps))

    assert np.linalg.norm(dloss - dloss_est) < 1e-6