Esempio n. 1
0
    def _plot(self):
        col_dict = get_column_dict(self.collection, 'i', *self.metric_selector)
        x = col_dict.pop('i')
        self.figure.clf()
        axes = self.figure.add_subplot(111)


        if self.smooth > 0: x, = gaussConv(self.smooth, x )

#        print x
        for label, y  in col_dict.items():
            if self.smooth > 0: y, = gaussConv(self.smooth, y )
#            print y 
            axes.plot(x,y, label=label)
        
        axes.legend(loc='best')
        axes.set_xlabel('iteration')
        self.figure.canvas.draw()
Esempio n. 2
0
    def _plot(self):
        col_dict = get_column_dict(self.collection, "i", *self.metric_selector)
        x = col_dict.pop("i")
        self.figure.clf()
        axes = self.figure.add_subplot(111)

        if self.smooth > 0:
            x, = gaussConv(self.smooth, x)

        #        print x
        for label, y in col_dict.items():
            if self.smooth > 0:
                y, = gaussConv(self.smooth, y)
            #            print y
            axes.plot(x, y, label=label)

        axes.legend(loc="best")
        axes.set_xlabel("iteration")
        self.figure.canvas.draw()
def plot_curve(collection, x_key, *y_key_list):

    col_dict = get_column_dict(collection, *((x_key, ) + y_key_list))

    x = col_dict.get(x_key)
    x_, = gaussConv(1, x)

    color_cycle = pp.gca()._get_lines.color_cycle

    for y_key in y_key_list:

        color = color_cycle.next()

        y = col_dict.get(y_key)
        y_, = gaussConv(1, y)
        pp.plot(x, y, '.', color=color, markersize=2)

        pp.plot(x_, y_, '-', label=y_key, color=color)

    pp.xlabel(x_key)
    pp.legend(loc='best')
Esempio n. 4
0
def plot_curve(collection, x_key, *y_key_list):
    
    col_dict = get_column_dict( collection, * ((x_key, ) + y_key_list)  )
    
    x = col_dict.get(x_key)
    x_, = gaussConv(1,x )
    
    color_cycle = pp.gca()._get_lines.color_cycle

    for y_key in y_key_list:

        color= color_cycle.next()
        
        y = col_dict.get(y_key)
        y_, = gaussConv(1,y )
        pp.plot(x,y,'.', color=color,markersize=2)
        
        pp.plot(x_,y_,'-', label=y_key, color=color)

        
    pp.xlabel(x_key)
    pp.legend(loc='best')
def plot_eval_info(plot, hp_info, y_keys, perm=None):

    y_dict = get_column_dict(hp_info.trace.db.eval_info, 'hp_id', *y_keys)

    idx = hp_info.map_hp_id_list(y_dict.pop('hp_id'))

    # add the agnostic bayes distribution the the list of traces
    idx_list, distr_list = get_column_list(hp_info.trace.db.predict, 'i',
                                           'prob')
    distr = distr_list[np.argmax(
        idx_list)]  # extract the last computed distribution
    y_dict['AB probability'] = unpack_prob(distr, hp_info, len(idx))

    if len(idx) == 0:
        print 'no results yet'
        return

    gp = MyGP(mcmc_iters=0, noiseless=False)
    gp.set_hypers(hp_info.chooser_state)

    for key in y_keys:
        y_dict[key] = np.array(y_dict[key])


#     print '%s.shape:'%y_key, y.shape

    X = hp_info.unit_grid[idx, :]

    hp_keys = hp_info.hp_keys
    print hp_keys
    if perm is not None:
        X = X[:, perm]
        hp_keys = [hp_keys[i] for i in perm]

    hp_keys = [clean_hp_name(hp_key) for hp_key in hp_keys]
    print hp_keys
    plot.set_info(X, y_dict, 'val.risk', hp_keys, hp_info.hp_space.var_list,
                  gp)
Esempio n. 6
0
def plot_eval_info( plot, hp_info, y_keys, perm = None ):
    
    
    y_dict = get_column_dict( hp_info.trace.db.eval_info, 'hp_id', *y_keys )
    
    idx = hp_info.map_hp_id_list(y_dict.pop('hp_id'))
    
    # add the agnostic bayes distribution the the list of traces
    idx_list, distr_list = get_column_list( hp_info.trace.db.predict, 'i', 'prob' )
    distr = distr_list[ np.argmax(idx_list) ] # extract the last computed distribution
    y_dict['AB probability'] = unpack_prob( distr, hp_info, len(idx))
    
    
    
    if len(idx) == 0:
        print 'no results yet'
        return
    
    gp = MyGP(mcmc_iters=0, noiseless=False)
    gp.set_hypers(hp_info.chooser_state)
    
    for key in y_keys:
        y_dict[key] = np.array(y_dict[key])
    
#     print '%s.shape:'%y_key, y.shape
    
    X = hp_info.unit_grid[idx,:]
    
    hp_keys = hp_info.hp_keys
    print hp_keys
    if perm is not None:
        X = X[:,perm]
        hp_keys = [hp_keys[i] for i in perm ]
    
    hp_keys = [ clean_hp_name(hp_key) for hp_key in hp_keys ]
    print hp_keys
    plot.set_info(X, y_dict, 'val.risk',hp_keys,  hp_info.hp_space.var_list, gp)