def test(n, iters): A, f, a = random_matrix(n) labels = [str(i) for i in range(1, n + 1)] G = spec.DirectedGraph(A, (a, f), labels=labels) G.coloring() print(G.colors) stats.community_dist_hist(G.colors, title=G.n, logscale=False, show=True, save=False) for k in range(iters): base = random.sample(G.indexer.keys(), int(np.floor(G.n * .9))) print('\nSpecializing on ', base) G.specialize(base, recolor=True) print(G.colors) stats.community_dist_hist(G.colors, title='$S_{}$'.format(k + 1) + str(base) + 'n=' + str(G.n), logscale=False, show=True, save=False)
[0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 1, 0, 1], [0, 0, 0, 1, 0, 1, 0]]) labels = ["a", "b", "c", 'd', 'e', 'f', 'g'] # G = s.DirectedGraph(A, labels) # G.specialize_graph(["a",'e'], verbose=True) B = np.array([[0, 0, 1], [1, 0, 0], [1, 1, 0]]) sig = lambda x: np.tanh(x) f = np.array( [[lambda x: 0 * x, lambda x: 0 * x, lambda x: -(1 / 2) * sig(x)], [lambda x: 0.5 * sig(x), lambda x: 0 * x, lambda x: 0 * x], [lambda x: 0.5 * sig(x), lambda x: 0.5 * sig(x), lambda x: 0 * x]]) a = np.array([3 / 10, 3 / 10, 3 / 10]) c = np.array([1 / 4, 0.025, 0]) labels = ['x1', 'x2', 'x3'] G = s.DirectedGraph(B, (a, f, c), labels=labels) G.iterate(80, np.random.random(G.n), graph=True) G.specialize_graph(['x2', 'x3'], verbose=False) G.iterate(80, np.random.random(G.n), graph=True) G.specialize_graph(['x1.1', 'x1.2', 'x2'], verbose=False) G.iterate(80, np.random.random(G.n), graph=True) # N = nx.DiGraph(G.A.T) # nx.draw_networkx_labels(N, pos=nx.spring_layout(N), labels=G.labeler) # nx.draw(N, pos=nx.spring_layout(N)) # plt.draw() # plt.show()
return anp.sin(x) def f2(x): return 0.9 * x + 7 / 5 def f3(x): return 0.9 * x + 0.5 f = np.array([[sig, sig, sig, sig, sig, sig, sig, sig], [sig, sig, sig, sig, sig, sig, sig, sig], [sig, sig, sig, sig, sig, sig, sig, sig], [sig, sig, sig, sig, sig, sig, sig, sig], [sig, sig, sig, sig, sig, sig, sig, sig], [sig, sig, sig, sig, sig, sig, sig, sig], [sig, sig, sig, sig, sig, sig, sig, sig], [sig, sig, sig, sig, sig, sig, sig, zero]]) a = np.array([zero, f1, f1, f1, f1, f1, f1, f1]) labels = ['1', '2', '3', '4', '5', '6', '7', '8'] G = s.DirectedGraph(A, (a, f), labels=labels) # print(G.coloring()) # G.network_vis()#use_eqp=True) # G.iterate(20,np.random.random(8),graph=True) base = ['1', '8'] #,'5','6','7'] G.specialize(base) # with open('half_spec.txt', 'w') as out_file: # out_file.write(str(G.A)) G.iterate(20, np.random.random(38), graph=True) # G.network_vis(use_eqp=True) # print(G.n)