Esempio n. 1
0
 def setUp(self):
     self.stable_nobirth = Specie("Stable_NoBirth", 0, 0.02, 0.02)
     self.stable = Specie("Stable", 0.2, 0.025, 0.03)
     self.continuous = Specie("Continuous", 0, 0.5, 0.2)
     self.extinction = Specie("Extinction", 0, 0.2, 0.4)
     self.continuous_carryingcap = Specie("Continuous_CarryingCapacity", 0,
                                          0.03, 0.02, 0.0001)
Esempio n. 2
0
    def insert_entity(self, entity, suggestion=None):
        """
        Inserts entity into one of species

        :param entity: Entity
            New entity
        :param suggestion: Specie, optional
            Suggested specie for new entity
        """
        if suggestion is not None:
            delta = suggestion.get_genetic_distance(entity, self.distance_c1,
                                                    self.distance_c2,
                                                    self.distance_c3)
            if delta < self.specie_acceptance:
                suggestion.entities.append(entity)
                return

        for specie in self.species:
            delta = specie.get_genetic_distance(entity, self.distance_c1,
                                                self.distance_c2,
                                                self.distance_c3)

            if delta < self.specie_acceptance:
                specie.entities.append(entity)
                return

        new_specie = Specie(entity)
        self.species.append(new_specie)
Esempio n. 3
0
class TestSpecie(unittest.TestCase):
    def setUp(self):
        self.stable_nobirth = Specie("Stable_NoBirth", 0, 0.02, 0.02)
        self.stable = Specie("Stable", 0.2, 0.025, 0.03)
        self.continuous = Specie("Continuous", 0, 0.5, 0.2)
        self.extinction = Specie("Extinction", 0, 0.2, 0.4)
        self.continuous_carryingcap = Specie("Continuous_CarryingCapacity", 0,
                                             0.03, 0.02, 0.0001)

    def test_equilibrium(self):
        self.assertEqual(self.stable_nobirth.equilibrium(), -1,
                         "Stable & NoBirth should reach -1")
        self.assertTrue(self.stable.equilibrium() > 0,
                        "Stable should reach > 1")
        self.assertEqual(self.continuous.equilibrium(), -1,
                         "Continuous should reach -1")
        self.assertEqual(self.extinction.equilibrium(), 0,
                         "Extinction should reach 0")
        self.assertEqual(self.continuous_carryingcap.equilibrium(), -1,
                         "Stable & NoBirth should reach -1")
Esempio n. 4
0
 def loop(self):
     self.cntGenes=0
     self.menu={}
     for s in self.species:
         self.cntGenes+=len(s.genes)
         self.menu[s.num]=[]
         for g in s.genes:
             self.menu[s.num].append(g.num)
     self.showInfo()
     sumfitness=0.0
     newspecies=[]
     newgenes = []
     for s in self.species:
         s.breed()
         for n in s.newSpecies():
             newspecies.append(n)
     for n in newspecies:
         self.species.append(Specie(members=[n],appearTime=self.generation))
     for s in self.species:
         for n in s.newGenes():
             newgenes.append(n)
     while len(newgenes):
         n=newgenes[0]
         for s in self.species:
             for o in s.genes:
                 if o not in newgenes:
                     self.adjustFitness(new=n,old=o)
         del newgenes[0]
     for s in self.species:
         s.sort()
         s.recountFitness()
         sumfitness+=s.fitness
     # sumfitness/=len(self.species)
     self.resource+=RESOURCE
     dieList=[]
     i=0
     while i <len(self.species):
         s=self.species[i]
         r=self.resource*(s.fitness)/sumfitness
         print '[%d] get resource:%d'%(s.num,r)
         for d in s.distribute(resource=r):
             dieList.append(d)
         if not len(s.genes):
             print 'The specie [%d] has died out.'%s.num
             del self.species[i]
             continue
         i+=1
     self.resource=0.0
     while len(dieList):
         # self.resource+=self.happyCorner(unlucky=dieList[0])
         self.happyCorner(unlucky=dieList[0])
         del dieList[0]
     saveCurrent(self.packCurrent())
     self.generation+=1
Esempio n. 5
0
    def speciate_genomes(self, genome_list: List[Genome],
                         specie_count: int) -> List[Specie]:
        specie_list: List[Specie] = []
        for i in range(specie_count):
            new_specie = Specie()
            selected_genome = genome_list[i]
            selected_genome.specie = new_specie
            new_specie.genome_list.append(selected_genome)
            new_specie.centroid = selected_genome.get_position()
            specie_list.append(new_specie)

        for i in range(len(specie_list), len(genome_list)):
            selected_genome = genome_list[i]
            closest_specie = self.find_closest_specie(selected_genome,
                                                      specie_list)
            selected_genome.specie = closest_specie
            closest_specie.genome_list.append(selected_genome)

        for specie in specie_list:
            specie.centroid = self.calculate_specie_centroid(specie)

        return self.speciate_until_convergence(specie_list)
Esempio n. 6
0
def init():
    drop()
    print'Initializing...'
    str=GeneStructure(gsNew=-1,fromDB=1,num=0)
    g=Gene(structure=str,weights=[],thresholds=[],num=0)
    for i in range (0,SIZE_SENSOR+SIZE_OUTPUT+1):
        str.appendNeuron()
        g.thresholds.append(random.uniform(-0.5,0.5))
    for i in range(0,SIZE_SENSOR):
        str.appendSynapse(origin=i,terminus=SIZE_SENSOR+SIZE_OUTPUT)
        g.weights.append(random.uniform(-2,2))
        str.appendSynapse(origin=SIZE_SENSOR+SIZE_OUTPUT,terminus=i+SIZE_SENSOR)
        g.weights.append(random.uniform(-2,2))
    save.saveStruct(str.pack())
    g.set()
    sp1=Specie(members=[g],appearTime=0)
    nature=Nature(species=[sp1],generation=0,restResource=0)
    save.saveCurrent(nature.packCurrent())
    print'Initializing has been done.'
Esempio n. 7
0
'''This will download images from the website: https://www.insectimages.org/ and save into a folder inside the images folder'''

from read_site import Site
from save_images import save_images
from specie import Specie

# This number specify what is the minimum number of images necessary, then the software will paginate the website ultil it reaches the min number.
NUM_MIN = 140

cockroaches = Specie(
    'https://www.insectimages.org/browse/taxthumb.cfm?order=369',
    'cockroaches')
orthoptera = Specie(
    'https://www.insectimages.org/browse/taxthumb.cfm?order=159', 'orthoptera')
neuroptera = Specie(
    'https://www.insectimages.org/browse/taxthumb.cfm?order=152', 'neuroptera')
mantodea = Specie('https://www.insectimages.org/browse/taxthumb.cfm?order=139',
                  'mantodea')
isoptera = Specie('https://www.insectimages.org/browse/taxthumb.cfm?order=121',
                  'isoptera')
odonata = Specie('https://www.insectimages.org/browse/taxthumb.cfm?order=155',
                 'odonata')

lst_specie = [cockroaches, orthoptera, neuroptera, mantodea, isoptera, odonata]


def down_lst_img(specie, num_min=NUM_MIN):
    site = Site(specie.url, num_min)
    site.browser.quit()
    save_images(site.lst_img_path, specie.folder)
Esempio n. 8
0
        tk.Tk.wm_title(self, "Evolyfe")

        self.container = tk.Frame(self)
        self.container.pack(side="top", fill="both", expand=True)
        self.container.grid_rowconfigure(0, weight=1)
        self.container.grid_columnconfigure(0, weight=1)

    def display_pop(self, pop: Population, emulated: int = 0):
        frame = PopGraphPage(self.container, pop, emulated)
        frame.grid(row=0, column=0, sticky="nsew")
        frame.tkraise()

    def display_environment_populations(self, env: Environment):
        frame = PopListHistogram(self.container, env)
        frame.grid(row=0, column=0, sticky="nsew")
        frame.tkraise()


if __name__ == "__main__":
    pops = [[Specie("Blob-Stable", 0, 0.02, 0.02), 40],
            [Specie("Blob-Increase", 0, 0.023, 0.02), 50],
            [Specie("Blob-Decrease", 0, 0.02, 0.025), 50]]

    e = Environment("BlobLand", pops)

    for _ in range(300):
        e.progress()

    app = App()
    app.display_environment_populations(e)
    app.mainloop()
Esempio n. 9
0
def parse(exper, job_count):
    # loop throught the number of jobs and parse each filepath
    for i in range(1, job_count):
        # we do not want to alter our original source filepath, so we create a local variable
        curr_dir = exper.source_file
        curr_props = exper.properties_file
        # if we are using label props, gather properties data
        if exper.label_props:
            exper.parse_properties(curr_props, i)
    # we need to add the job directory so we can access the xml file
        curr_dir += 'job_%i/run/' % i
        # get the complete file path of the working xml file
        path = os.path.join(curr_dir, 'run0.xml')
        # setup the tree
        tree = ET.parse(path)

        # get the root of the tree
        root = tree.getroot()

        # array of all the maximum fitness values in the document
        max_fitvals = []
        # array of all the minimum fitness values in the doc
        min_fitvals = []
        # array of all the average fitness values in the doc
        avg_fitvals = []

        # array of all the champion complexity values in the document
        champ_compvals = []
        # array of all the maximum complexity values in the document
        max_compvals = []
        # array of all the minimum complexity values in the document
        min_compvals = []
        # array of all the average complexity values in the document
        avg_compvals = []

        # array of species for this job
        job_species = []

        # keep track of whether or not we are at the proper epoch to pull or skip information
        epoch_index = 0
        if exper.generation_count is None:
            # search paramaters contains all the information on population size and generation size
            search_parameters = root.findall('search-parameters')
            # look at search-paramaters to get the given generation size
            for param in search_parameters:
                for child in param.getchildren():
                    if child.tag == 'generations':
                        exper.generation_count = int(child.text)
        # get all the generation elements so we can walk through them and process data
        gen_list = root.findall('generation')
        # get the last generation element so we can check it and make sure we dont miss the final data point, regardless of epoch modifier
        last_gen = gen_list[-1]

        # go through each generation tag in the xml file for parsing
        for generation in gen_list:
            # need to create a list of species for this generation
            gen_species = []
            # check to see if we are a multiple of the epoch modifier
            if epoch_index % exper.epoch_modifier == (
                    exper.epoch_modifier -
                    1) or epoch_index == 0 or generation == last_gen:
                # loop through the generation elements subchildren to find fitness and complexity
                for genchild in generation.getchildren():
                    # identify fitness element using .tag
                    if genchild.tag == 'fitness':
                        # loop through children of fitness to find the max fitness
                        for fitchild in genchild:
                            # check if element is max using .tag
                            if fitchild.tag == 'max':
                                # add the value of the max fitness to the array
                                max_fitvals.append(int(fitchild.text))
                            # check if element is min
                            if fitchild.tag == 'min':
                                min_fitvals.append(int(fitchild.text))
                            # check if element is avg
                            if fitchild.tag == 'avg':
                                avg_fitvals.append(float(fitchild.text))
        # repeat above process for complexity
                    if genchild.tag == 'complexity':
                        for compchild in genchild:
                            if compchild.tag == 'champ':
                                champ_compvals.append(int(compchild.text))
                            # check if element is max
                            if compchild.tag == 'max':
                                max_compvals.append(int(compchild.text))
                            # check if element is min
                            if compchild.tag == 'min':
                                min_compvals.append(int(compchild.text))
                            # check if element is avg
                            if compchild.tag == 'avg':
                                avg_compvals.append(float(compchild.text))
                    # get the species of the exper
                    if genchild.tag == 'specie':
                        # create a new specie and add it to the list of species for this generation
                        specie = Specie(genchild.get('id'),
                                        genchild.get('count'))
                        # loop through the chromosomes in the specie and create add them to the specie list of chromosomes
                        for schild in genchild:
                            specie.add_chromosome(schild.get('id'),
                                                  schild.get('fitness'))

                        gen_species.append(specie)

                # increment the epoch_index after we've pulled the data
                epoch_index += 1
            else:
                # even if we don't pull data we still want to increment the epoch_index to keep track of where we are
                epoch_index += 1
            # need to add the list of this generations species to the list of this jobs species by generation
            if len(gen_species) > 0:
                job_species.append(gen_species)
    # add parsed values to global arrays declared in the init function
        exper.max_fit_by_job.append(max_fitvals)
        exper.min_fitness_by_job.append(min_fitvals)
        exper.avg_fitness_by_job.append(avg_fitvals)

        exper.champ_comp_by_job.append(champ_compvals)
        exper.max_comp_by_job.append(max_compvals)
        exper.min_comp_by_job.append(min_compvals)
        exper.avg_comp_by_job.append(avg_compvals)

        exper.species_by_job.append(job_species)