def test_Helmholtz2(SD): M = 2*N kx = 11 points, weights = SD.points_and_weights(M) uj = np.random.randn(M) u_hat = np.zeros(M) u_hat = SD.fst(uj, u_hat) uj = SD.ifst(u_hat, uj) A = ADDmat(np.arange(M).astype(np.float)) B = BDDmat(np.arange(M).astype(np.float), SD.quad) s = slice(0, M-2) u1 = np.zeros(M) u1 = SD.fst(uj, u1) c = A.matvec(u1)+kx**2*B.matvec(u1) b = np.zeros(M) SFTc.Mult_Helmholtz_1D(M, SD.quad=="GL", 1, kx**2, u1, b) assert np.allclose(c, b) b = np.zeros((M, 4, 4), dtype=np.complex) u1 = u1.repeat(16).reshape((M, 4, 4)) +1j*u1.repeat(16).reshape((M, 4, 4)) kx = np.zeros((4, 4))+kx SFTc.Mult_Helmholtz_3D_complex(M, SD.quad=="GL", 1.0, kx**2, u1, b) assert np.linalg.norm(b[:, 2, 2].real - c)/(M*16) < 1e-12 assert np.linalg.norm(b[:, 2, 2].imag - c)/(M*16) < 1e-12
def test_ADDmat(ST2): M = 2*N u = (1-x**2)*sin(np.pi*x) f = -u.diff(x, 2) points, weights = ST2.points_and_weights(M) uj = np.array([u.subs(x, h) for h in points], dtype=np.float) fj = np.array([f.subs(x, h) for h in points], dtype=np.float) if ST2.__class__.__name__ == "ShenDirichletBasis": A = ADDmat(np.arange(M).astype(np.float)) s = slice(0, M-2) elif ST2.__class__.__name__ == "ShenNeumannBasis": A = ANNmat(np.arange(M).astype(np.float)) s = slice(1, M-2) fj -= np.dot(fj, weights)/weights.sum() uj -= np.dot(uj, weights)/weights.sum() f_hat = np.zeros(M) f_hat = ST2.fastShenScalar(fj, f_hat) u_hat = np.zeros(M) u_hat[s] = la.spsolve(A.diags(), f_hat[s]) u0 = np.zeros(M) u0 = ST2.ifst(u_hat, u0) #from IPython import embed; embed() assert np.allclose(u0, uj) u1 = np.zeros(M) u1 = ST2.fst(uj, u1) c = A.matvec(u1) assert np.allclose(c, f_hat)
def test_ADDmat(ST2): M = 2 * N u = (1 - x**2) * sin(np.pi * x) f = -u.diff(x, 2) points, weights = ST2.points_and_weights(M) uj = np.array([u.subs(x, h) for h in points], dtype=np.float) fj = np.array([f.subs(x, h) for h in points], dtype=np.float) if ST2.__class__.__name__ == "ShenDirichletBasis": A = ADDmat(np.arange(M).astype(np.float)) s = slice(0, M - 2) elif ST2.__class__.__name__ == "ShenNeumannBasis": A = ANNmat(np.arange(M).astype(np.float)) s = slice(1, M - 2) fj -= np.dot(fj, weights) / weights.sum() uj -= np.dot(uj, weights) / weights.sum() f_hat = np.zeros(M) f_hat = ST2.fastShenScalar(fj, f_hat) u_hat = np.zeros(M) u_hat[s] = la.spsolve(A.diags(), f_hat[s]) u0 = np.zeros(M) u0 = ST2.ifst(u_hat, u0) #from IPython import embed; embed() assert np.allclose(u0, uj) u1 = np.zeros(M) u1 = ST2.fst(uj, u1) c = A.matvec(u1) assert np.allclose(c, f_hat)
def test_Helmholtz_matvec(SD): M = 2 * N kx = 11 points, weights = SD.points_and_weights(M) uj = np.random.randn(M) u_hat = np.zeros(M) u_hat = SD.fst(uj, u_hat) uj = SD.ifst(u_hat, uj) A = ADDmat(np.arange(M).astype(np.float)) B = BDDmat(np.arange(M).astype(np.float), SD.quad) AB = HelmholtzCoeff(np.arange(M).astype(np.float), 1, kx**2, SD.quad) s = slice(0, M - 2) u1 = np.zeros(M) u1 = SD.fst(uj, u1) c = A.matvec(u1) + kx**2 * B.matvec(u1) b = np.zeros(M) #SFTc.Mult_Helmholtz_1D(M, SD.quad=="GL", 1, kx**2, u1, b) b = AB.matvec(u1, b) assert np.allclose(c, b) b = np.zeros((M, 4, 4), dtype=np.complex) u1 = u1.repeat(16).reshape((M, 4, 4)) + 1j * u1.repeat(16).reshape( (M, 4, 4)) kx = np.zeros((4, 4)) + kx #SFTc.Mult_Helmholtz_3D_complex(M, SD.quad=="GL", 1.0, kx**2, u1, b) AB = HelmholtzCoeff(np.arange(M).astype(np.float), 1, kx**2, SD.quad) b = AB.matvec(u1, b) assert np.linalg.norm(b[:, 2, 2].real - c) / (M * 16) < 1e-12 assert np.linalg.norm(b[:, 2, 2].imag - c) / (M * 16) < 1e-12
def test_Helmholtz(ST2): M = 4*N kx = 12 points, weights = ST2.points_and_weights(M) fj = np.random.randn(M) f_hat = np.zeros(M) if not ST2.__class__.__name__ == "ChebyshevTransform": f_hat = ST2.fst(fj, f_hat) fj = ST2.ifst(f_hat, fj) if ST2.__class__.__name__ == "ShenDirichletBasis": A = ADDmat(np.arange(M).astype(np.float)) B = BDDmat(np.arange(M).astype(np.float), ST2.quad) s = slice(0, M-2) elif ST2.__class__.__name__ == "ShenNeumannBasis": A = ANNmat(np.arange(M).astype(np.float)) B = BNNmat(np.arange(M).astype(np.float), ST2.quad) s = slice(1, M-2) f_hat = np.zeros(M) f_hat = ST2.fastShenScalar(fj, f_hat) u_hat = np.zeros(M) u_hat[s] = la.spsolve(A.diags()+kx**2*B.diags(), f_hat[s]) u1 = np.zeros(M) u1 = ST2.ifst(u_hat, u1) c = A.matvec(u_hat)+kx**2*B.matvec(u_hat) c2 = np.dot(A.diags().toarray(), u_hat[s]) + kx**2*np.dot(B.diags().toarray(), u_hat[s]) assert np.allclose(c, f_hat) assert np.allclose(c[s], c2) H = Helmholtz(M, kx, ST2.quad, ST2.__class__.__name__ == "ShenNeumannBasis") u0_hat = np.zeros(M) u0_hat = H(u0_hat, f_hat) u0 = np.zeros(M) u0 = ST2.ifst(u0_hat, u0) assert np.linalg.norm(u0 - u1) < 1e-12 # Multidimensional f_hat = (f_hat.repeat(16).reshape((M, 4, 4))+1j*f_hat.repeat(16).reshape((M, 4, 4))) kx = np.zeros((4, 4))+12 H = Helmholtz(M, kx, ST2.quad, ST2.__class__.__name__ == "ShenNeumannBasis") u0_hat = np.zeros((M, 4, 4), dtype=np.complex) u0_hat = H(u0_hat, f_hat) u0 = np.zeros((M, 4, 4), dtype=np.complex) u0 = ST2.ifst(u0_hat, u0) #from IPython import embed; embed() assert np.linalg.norm(u0[:, 2, 2].real - u1)/(M*16) < 1e-12 assert np.linalg.norm(u0[:, 2, 2].imag - u1)/(M*16) < 1e-12
def solve(fk): k = ST.wavenumbers(N) if solver == "sparse": A = ADDmat(np.arange(N).astype(np.float)).diags() B = BDDmat(np.arange(N).astype(np.float), quad).diags() fk[0] -= kx**2*pi/2.*(a + b) fk[1] -= kx**2*pi/4.*(a - b) uk_hat = la.spsolve(A+kx**2*B, fk[:-2]) assert np.allclose(np.dot(A.toarray()+kx**2*B.toarray(), uk_hat), fk[:-2]) elif solver == "lu": uk_hat = np.zeros(N-2) sol = Helmholtz(N, kx, quad=quad) fk[0] -= kx**2*pi/2.*(a + b) fk[1] -= kx**2*pi/4.*(a - b) uk_hat = sol(uk_hat, fk[:-2]) return uk_hat
def solve(fk): k = ST.wavenumbers(N) if solver == "sparse": A = ADDmat(np.arange(N).astype(np.float)).diags() B = BDDmat(np.arange(N).astype(np.float), quad).diags() fk[0] -= kx**2 * pi / 2. * (a + b) fk[1] -= kx**2 * pi / 4. * (a - b) uk_hat = la.spsolve(A + kx**2 * B, fk[:-2]) assert np.allclose(np.dot(A.toarray() + kx**2 * B.toarray(), uk_hat), fk[:-2]) elif solver == "lu": uk_hat = np.zeros(N - 2) sol = Helmholtz(N, kx, quad=quad) fk[0] -= kx**2 * pi / 2. * (a + b) fk[1] -= kx**2 * pi / 4. * (a - b) uk_hat = sol(uk_hat, fk[:-2]) return uk_hat
def test_Helmholtz(ST2): M = 4 * N kx = 12 points, weights = ST2.points_and_weights(M) fj = np.random.randn(M) f_hat = np.zeros(M) if not ST2.__class__.__name__ == "ChebyshevTransform": f_hat = ST2.fst(fj, f_hat) fj = ST2.ifst(f_hat, fj) if ST2.__class__.__name__ == "ShenDirichletBasis": A = ADDmat(np.arange(M).astype(np.float)) B = BDDmat(np.arange(M).astype(np.float), ST2.quad) s = slice(0, M - 2) elif ST2.__class__.__name__ == "ShenNeumannBasis": A = ANNmat(np.arange(M).astype(np.float)) B = BNNmat(np.arange(M).astype(np.float), ST2.quad) s = slice(1, M - 2) f_hat = np.zeros(M) f_hat = ST2.fastShenScalar(fj, f_hat) u_hat = np.zeros(M) u_hat[s] = la.spsolve(A.diags() + kx**2 * B.diags(), f_hat[s]) u1 = np.zeros(M) u1 = ST2.ifst(u_hat, u1) c = A.matvec(u_hat) + kx**2 * B.matvec(u_hat) c2 = np.dot(A.diags().toarray(), u_hat[s]) + kx**2 * np.dot(B.diags().toarray(), u_hat[s]) assert np.allclose(c, f_hat) assert np.allclose(c[s], c2) H = Helmholtz(M, kx, ST2.quad, ST2.__class__.__name__ == "ShenNeumannBasis") u0_hat = np.zeros(M) u0_hat = H(u0_hat, f_hat) u0 = np.zeros(M) u0 = ST2.ifst(u0_hat, u0) assert np.linalg.norm(u0 - u1) < 1e-12 # Multidimensional f_hat = (f_hat.repeat(16).reshape( (M, 4, 4)) + 1j * f_hat.repeat(16).reshape((M, 4, 4))) kx = np.zeros((4, 4)) + 12 H = Helmholtz(M, kx, ST2.quad, ST2.__class__.__name__ == "ShenNeumannBasis") u0_hat = np.zeros((M, 4, 4), dtype=np.complex) u0_hat = H(u0_hat, f_hat) u0 = np.zeros((M, 4, 4), dtype=np.complex) u0 = ST2.ifst(u0_hat, u0) #from IPython import embed; embed() assert np.linalg.norm(u0[:, 2, 2].real - u1) / (M * 16) < 1e-12 assert np.linalg.norm(u0[:, 2, 2].imag - u1) / (M * 16) < 1e-12
def solve(fk): N = len(fk)+2 k = ST.wavenumbers(N) if solver == "banded": A = np.zeros((N-2, N-2)) A[-1, :] = -2*np.pi*(k+1)*(k+2) for i in range(2, N-2, 2): A[-i-1, i:] = -4*np.pi*(k[:-i]+1) uk_hat = solve_banded((0, N-3), A, fk) elif solver == "sparse": aij = [-2*np.pi*(k+1)*(k+2)] for i in range(2, N-2, 2): aij.append(np.array(-4*np.pi*(k[:-i]+1))) A = diags(aij, range(0, N-2, 2)) uk_hat = la.spsolve(A, fk) elif solver == "bs": uk_hat = np.zeros_like(fk) A = ADDmat(np.arange(N).astype(float), scale=1.0) uk_hat = A.apply_inverse(fk, uk_hat) return uk_hat
def solve(fk): N = len(fk) + 2 k = ST.wavenumbers(N) if solver == "banded": A = np.zeros((N - 2, N - 2)) A[-1, :] = -2 * np.pi * (k + 1) * (k + 2) for i in range(2, N - 2, 2): A[-i - 1, i:] = -4 * np.pi * (k[:-i] + 1) uk_hat = solve_banded((0, N - 3), A, fk) elif solver == "sparse": aij = [-2 * np.pi * (k + 1) * (k + 2)] for i in range(2, N - 2, 2): aij.append(np.array(-4 * np.pi * (k[:-i] + 1))) A = diags(aij, range(0, N - 2, 2)) uk_hat = la.spsolve(A, fk) elif solver == "bs": uk_hat = np.zeros_like(fk) A = ADDmat(np.arange(N).astype(float), scale=1.0) uk_hat = A.apply_inverse(fk, uk_hat) return uk_hat