Esempio n. 1
0
    def _classify_relations(self, entity_spans, size_embeddings, relations,
                            rel_masks, h, chunk_start):
        batch_size = relations.shape[0]

        # create chunks if necessary
        if relations.shape[1] > self._max_pairs:
            relations = relations[:, chunk_start:chunk_start + self._max_pairs]
            rel_masks = rel_masks[:, chunk_start:chunk_start + self._max_pairs]
            h = h[:, :relations.shape[1], :]

        # get pairs of entity candidate representations
        entity_pairs = util.batch_index(entity_spans, relations)
        entity_pairs = entity_pairs.view(batch_size, entity_pairs.shape[1], -1)

        # get corresponding size embeddings
        size_pair_embeddings = util.batch_index(size_embeddings, relations)
        size_pair_embeddings = size_pair_embeddings.view(
            batch_size, size_pair_embeddings.shape[1], -1)

        # relation context (context between entity candidate pair)
        rel_ctx = rel_masks * h
        rel_ctx = rel_ctx.max(dim=2)[0]

        # create relation candidate representations including context, max pooled entity candidate pairs
        # and corresponding size embeddings
        rel_repr = torch.cat([rel_ctx, entity_pairs, size_pair_embeddings],
                             dim=2)
        rel_repr = self.dropout(rel_repr)

        # classify relation candidates
        chunk_rel_logits = self.rel_classifier(rel_repr)
        return chunk_rel_logits
Esempio n. 2
0
    def _classify_relations(self, entity_spans, size_embeddings, relations, rel_masks, h, chunk_start):
        batch_size = relations.shape[0]

        # create chunks if necessary
        if relations.shape[1] > self._max_pairs:
            relations = relations[:, chunk_start:chunk_start + self._max_pairs]
            rel_masks = rel_masks[:, chunk_start:chunk_start + self._max_pairs]
            h = h[:, :relations.shape[1], :]

        # get pairs of entity candidate representations
        entity_pairs = util.batch_index(entity_spans, relations)
        entity_pairs = entity_pairs.view(batch_size, entity_pairs.shape[1], -1)

        # get corresponding size embeddings
        size_pair_embeddings = util.batch_index(size_embeddings, relations)
        size_pair_embeddings = size_pair_embeddings.view(batch_size, size_pair_embeddings.shape[1], -1)

        # relation context (context between entity candidate pair)
        # mask non entity candidate tokens
        m = ((rel_masks == 0).float() * (-1e30)).unsqueeze(-1)
        rel_ctx = m + h
        # max pooling
        rel_ctx = rel_ctx.max(dim=2)[0]
        # set the context vector of neighboring or adjacent entity candidates to zero
        rel_ctx[rel_masks.to(torch.uint8).any(-1) == 0] = 0

        # create relation candidate representations including context, max pooled entity candidate pairs
        # and corresponding size embeddings
        rel_repr = torch.cat([rel_ctx, entity_pairs, size_pair_embeddings], dim=2)
        rel_repr = self.dropout(rel_repr)

        # classify relation candidates
        chunk_rel_logits = self.rel_classifier(rel_repr)
        return chunk_rel_logits