Esempio n. 1
0
 def _get_illum_angles(self):
     "Ilumin returns (trgepoch, srfvec, phase, solar, emission)"
     if self.obs is not None:
         output = spice.ilumin("Ellipsoid", self.target, self.et, self.ref_frame, self.corr, self.obs, self.spoint)
         return IllumAngles.fromtuple(output[2:])
     else:
         solar = spice.vsep(self.sun_direction, self.snormal)
         # leaving at 0 what I don't have
         return IllumAngles.fromtuple((0, solar, 0))
Esempio n. 2
0
 def illum_angles(self):
     """Ilumin returns (trgepoch, srfvec, phase, solar, emission)
     """
     if self.obs is not None:
         output = spice.ilumin(
             "Ellipsoid",
             self.target,
             self.et,
             self.ref_frame,
             self.corr,
             self.obs,
             self.spoint,
         )
         return IllumAngles.fromtuple(output[2:])
     else:
         solar = spice.vsep(self.sun_direction, self.snormal)
         # leaving at 0 what I don't have
         return IllumAngles.fromtuple((0, solar, 0))
Esempio n. 3
0
    def highres_swath_geometry(self, hdul, map_data, res=200):
        """
        Generates an artificial high-resolution slit, calculates viewing geometry and surface-intercept map.
        Parameters
        ----------
        hdul : HDUList
            Opened FITS file.
        res : int, optional
            The desired number of artificial elements along the slit. Defaults to 200.

        Returns
        -------
        latitude : array
            Array of latitudes for the centers of each high-resolution artificial pixel. NaNs if pixel doesn't intercept
            the surface of Mars.
        longitude : array
            Array of longitudes for the centers of each high-resolution artificial pixel. NaNs if pixel doesn't intercept
            the surface of Mars.
        sza : array
            Array of solar zenith angles for the centers of each high-resolution artificial pixel. NaNs if pixel doesn't
            intercept the surface of Mars.
        ea
        pa
        local_time : array
            Array of local times for the centers of each high-resolution artificial pixel. NaNs if pixel doesn't intercept
            the surface of Mars.
        x : array
            Horizontal coordinate edges in angular space. Has shape (n+1, m+1) for geometry arrays with shape (n,m).
        y : array
            Vertical coordinate edges in angular space. Has shape (n+1, m+1) for geometry arrays with shape (n,m).
        cx : array
            Horizontal coordinate centers in angular space. Same shape as geometry arrays.
        cy : array
            Vertical coordinate centers in angular space. Same shape as geometry arrays.
        context_map : array
            High-resolution image of the Mars surface as intercepted by the swath. RGB tuples with shape (n,m,3).
        """
        # get swath vectors, ephemeris times, and mirror angles
        vec = hdul['pixelgeometry'].data['pixel_vec']
        et = hdul['integration'].data['et']
        # get dimensions of the input data
        n_int = hdul['integration'].data.shape[0]
        n_spa = len(hdul['binning'].data['spapixlo'][0])
        # set the high-resolution slit width and calculate the number of high-resolution integrations
        hifi_spa = res
        hifi_int = int(hifi_spa / n_spa * n_int)
        # make arrays of ephemeris time and array to hold the new swath vector calculations

        # here thru 481 just interpolate et_arr and vec_arr onto new grid (int, pos) and (int, pos, 3) adn they're all just center values

        et_arr = np.expand_dims(et, 1) * np.ones((n_int, n_spa))
        et_arr = resize(et_arr, (hifi_int, hifi_spa), mode='edge')
        vec_arr = np.zeros((hifi_int + 1, hifi_spa + 1, 3))
        # make an artificially-divided swath and create new array of swath vectors
        if self.__flip:
            lower_left = vec[0, :, 0, 0]
            upper_left = vec[-1, :, 0, 1]
            lower_right = vec[0, :, -1, 2]
            upper_right = vec[-1, :, -1, 3]
        else:
            lower_left = vec[0, :, 0, 1]
            upper_left = vec[-1, :, 0, 0]
            lower_right = vec[0, :, -1, 3]
            upper_right = vec[-1, :, -1, 2]
        for e in range(3):
            a = np.linspace(lower_left[e], upper_left[e], hifi_int + 1)
            b = np.linspace(lower_right[e], upper_right[e], hifi_int + 1)
            vec_arr[:, :, e] = np.array(
                [np.linspace(i, j, hifi_spa + 1) for i, j in zip(a, b)])
        # resize array to extract centers
        vec_arr = resize(vec_arr, (hifi_int, hifi_spa, 3), anti_aliasing=True)
        # make empty arrays to hold geometry calculations
        latitude = np.zeros((hifi_int, hifi_spa)) * np.nan
        longitude = np.zeros((hifi_int, hifi_spa)) * np.nan
        sza = np.zeros((hifi_int, hifi_spa)) * np.nan
        phase_angle = np.zeros((hifi_int, hifi_spa)) * np.nan
        emission_angle = np.zeros((hifi_int, hifi_spa)) * np.nan
        local_time = np.zeros((hifi_int, hifi_spa)) * np.nan
        context_map = np.zeros((hifi_int, hifi_spa, 4)) * np.nan

        # calculate intercept latitude and longitude using SPICE, looping through each high-resolution pixel
        target = 'Mars'
        frame = 'IAU_Mars'
        abcorr = 'LT+S'
        observer = 'MAVEN'
        body = 499  # Mars IAU code
        for i in range(hifi_int):
            for j in range(hifi_spa):
                et = et_arr[i, j]
                los_mid = vec_arr[i, j, :]
                # try to perform the SPICE calculations and record the results
                try:
                    # calculate surface intercept
                    spoint, trgepc, srfvec = spice.sincpt(
                        'Ellipsoid', target, et, frame, abcorr, observer,
                        frame, los_mid)
                    # calculate illumination angles
                    trgepc, srfvec, phase_for, solar, emissn = spice.ilumin(
                        'Ellipsoid', target, et, frame, abcorr, observer,
                        spoint)
                    # convert from rectangular to spherical coordinates
                    rpoint, colatpoint, lonpoint = spice.recsph(spoint)
                    # convert longitude from domain [-pi,pi) to [0,2pi)
                    if lonpoint < 0.:
                        lonpoint += 2 * np.pi
                    # convert ephemeris time to local solar time
                    hr, mn, sc, time, ampm = spice.et2lst(et,
                                                          body,
                                                          lonpoint,
                                                          'planetocentric',
                                                          timlen=256,
                                                          ampmlen=256)
                    # convert spherical coordinates to latitude and longitude in degrees
                    latitude[i, j] = np.degrees(np.pi / 2 - colatpoint)
                    longitude[i, j] = np.degrees(lonpoint)
                    # convert illumination angles to degrees and record
                    sza[i, j] = np.degrees(solar)
                    phase_angle[i, j] = np.degrees(phase_for)
                    emission_angle[i, j] = np.degrees(emissn)
                    # convert local solar time to decimal hour
                    local_time[i, j] = hr + mn / 60 + sc / 3600
                    # convert latitude and longitude to pixel coordinates
                    map_lat = int(np.round(np.degrees(colatpoint), 1) * 10)
                    map_lon = int(np.round(np.degrees(lonpoint), 1) * 10)
                    # make a corresponding magnetic field topology map
                    context_map[i, j] = map_data[map_lat, map_lon]
                # if the SPICE calculation fails, this (probably) means it didn't intercept the planet
                except:
                    # This pixel (or the vector) didn't intercept the planet
                    pass
        # get mirror angles
        angles = hdul['integration'].data[
            'mirror_deg'] * 2  # convert from mirror angles to FOV angles
        dang = np.diff(angles)[0]
        # create an meshgrid of angular coordinates for the high-resolution pixel edges
        x, y = np.meshgrid(
            np.linspace(0, self.__slit_width, hifi_spa + 1),
            np.linspace(angles[0] - dang / 2, angles[-1] + dang / 2,
                        hifi_int + 1))
        # calculate the angular separation between pixels
        dslit = self.__slit_width / hifi_spa
        # create an meshgrid of angular coordinates for the high-resolution pixel centers
        cx, cy = np.meshgrid(
            np.linspace(0 + dslit, self.__slit_width - dslit, hifi_spa),
            np.linspace(angles[0], angles[-1], hifi_int))
        # beta-flip the coordinate arrays if necessary
        if self.__flip:
            x = np.fliplr(x)
            y = (np.fliplr(y) - 90) / (-1) + 90
            cx = np.fliplr(cx)
            cy = (np.fliplr(cy) - 90) / (-1) + 90
        # convert longitude to [-180,180)
        longitude[np.where(longitude > 180)] -= 360
        # return the geometry and coordinate arrays
        # cx, cy is for a lat/lon grid on top of the map (50, 1) --> (200, 4)
        # all but x, y, context_map is (n_integrations, n_positions)
        # the context map has shape (n_integrations, n_positions, 4)
        # x, y, cx, cy are (n_int +1, n_pos + 1)
        return latitude, longitude, sza, emission_angle, phase_angle, \
               local_time, x, y, cx, cy, context_map
Esempio n. 4
0
        ])

        nadir_lonlats = np.asfarray(
            [sp.reclat(mars2tgo)
             for mars2tgo in list(mars2tgo_pos)])[:, 1:3] * sp.dpr()
        nadir_lsts = [
            sp.et2lst(time, 499, (nadir_lonlat[0] / sp.dpr()),
                      "PLANETOCENTRIC")[3]
            for time, nadir_lonlat in zip(list(times), list(nadir_lonlats))
        ]
        nadir_lsts_hours = np.asfarray([
            np.float(nadir_lst[0:2]) + np.float(nadir_lst[3:5]) / 60.0 +
            np.float(nadir_lst[6:8]) / 3600.0 for nadir_lst in nadir_lsts
        ])
        nadir_incidence_angles = np.asfarray([
            sp.ilumin(shape, target, time, "IAU_MARS", abcorr, observer,
                      mars2tgo)[3] * sp.dpr()
            for time, mars2tgo in zip(list(times), list(mars2tgo_pos))
        ])

        print("Calculating altitudes")
        #calculate tangent point altitude
        altitudes = np.asfarray([
            sp.npedln(mars_axes[0], mars_axes[1], mars_axes[2], line_point,
                      line_vector)[1] for line_point, line_vector in zip(
                          list(line_points), list(line_vectors))
        ])

        print("Checking if occultations real or not")
        #check that tgo is really behind mars as seen from sun: calculate angle between tgo-sun vector and tgo-mars centre vector
        sep_angles = np.asfarray([
            sp.vsep(sp.vsub(line_coord, line_point), line_vector)
Esempio n. 5
0
method = "Ellipsoid"
target = "MARS"
fixref = "IAU_MARS"
abcorr = "None"
obsrvr = "SUN"

spoint = sp.latrec(3390, -24.6 / sp.dpr(), 18.3 / sp.dpr())
et = sp.utc2et("2003 OCT 28, 00:00:00")

step = 60

for loop in range(100):
    time = et + step * loop
    time_string = sp.et2utc(time, "C", 0)
    sza = sp.ilumin(method, target, time, fixref, abcorr, obsrvr,
                    spoint)[3] * sp.dpr()


def writeLog(file_name, lines_to_write):
    """function to append log file"""
    #    global LOG_PATHS
    logFile = open(file_name + ".csv", 'w')
    for line_to_write in lines_to_write:
        logFile.write(line_to_write + '\n')
    logFile.close()


#    print(line_to_write)

utcstring_start = '2016 MAR 17 12:00:00'
utcstring_end = '2017 JAN 17 12:00:00'
Esempio n. 6
0
def get_sol_incidence(date, r):
    et = spice.str2et(str(date))
    _, _, _, sol_incidence, _ = spice.ilumin('ellipsoid', 'moon', et,
                                             'iau_moon', 'lt+s', 'sun', r)
    return np.degrees(sol_incidence)
Esempio n. 7
0
def highres_swath_geometry(hdul, res=200, twilight='discrete'):
    """
    Generates an artificial high-resolution slit, calculates viewing geometry and surface-intercept map.

    Parameters
    ----------
    hdul : HDUList
        Opened FITS file.
    res : int, optional
        The desired number of artificial elements along the slit. Defaults to 200.
    twilight : str
        The appearance of the twilight zone. 'discrete' has a partially transparent zone with sharp edges while
        'continuous' smoothes it with a cosine function. The discrete option does not always work on all systems, but
        I cannot yet say why that is. In those cases you get the continuous appearance.

    Returns
    -------
    latitude : array
        Array of latitudes for the centers of each high-resolution artificial pixel. NaNs if pixel doesn't intercept
        the surface of Mars.
    longitude : array
        Array of longitudes for the centers of each high-resolution artificial pixel. NaNs if pixel doesn't intercept
        the surface of Mars.
    sza : array
        Array of solar zenith angles for the centers of each high-resolution artificial pixel. NaNs if pixel doesn't
        intercept the surface of Mars.
    local_time : array
        Array of local times for the centers of each high-resolution artificial pixel. NaNs if pixel doesn't intercept
        the surface of Mars.
    x : array
        Horizontal coordinate edges in angular space. Has shape (n+1, m+1) for geometry arrays with shape (n,m).
    y : array
        Vertical coordinate edges in angular space. Has shape (n+1, m+1) for geometry arrays with shape (n,m).
    cx : array
        Horizontal coordinate centers in angular space. Same shape as geometry arrays.
    cy : array
        Vertical coordinate centers in angular space. Same shape as geometry arrays.
    context_map : array
        High-resolution image of the Mars surface as intercepted by the swath. RGB tuples with shape (n,m,3).
    """

    # calculate beta-flip state
    flipped = beta_flip(hdul)

    # get swath vectors, ephemeris times, and mirror angles
    vec = hdul['pixelgeometry'].data['pixel_vec']
    et = hdul['integration'].data['et']

    # get dimensions of the input data
    n_int = hdul['integration'].data.shape[0]
    n_spa = len(hdul['binning'].data['spapixlo'][0])

    # set the high-resolution slit width and calculate the number of high-resolution integrations
    hifi_spa = res
    hifi_int = int(hifi_spa / n_spa * n_int)

    # make arrays of ephemeris time and array to hold the new swath vector calculations
    et_arr = np.expand_dims(et, 1) * np.ones((n_int, n_spa))
    et_arr = resize(et_arr, (hifi_int, hifi_spa), mode='edge')
    vec_arr = np.zeros((hifi_int + 1, hifi_spa + 1, 3))

    # make an artificially-divided slit and create new array of swath vectors
    if flipped:
        lower_left = vec[0, :, 0, 0]
        upper_left = vec[-1, :, 0, 1]
        lower_right = vec[0, :, -1, 2]
        upper_right = vec[-1, :, -1, 3]
    else:
        lower_left = vec[0, :, 0, 1]
        upper_left = vec[-1, :, 0, 0]
        lower_right = vec[0, :, -1, 3]
        upper_right = vec[-1, :, -1, 2]

    for e in range(3):
        a = np.linspace(lower_left[e], upper_left[e], hifi_int + 1)
        b = np.linspace(lower_right[e], upper_right[e], hifi_int + 1)
        vec_arr[:, :, e] = np.array([np.linspace(i, j, hifi_spa + 1) for i, j in zip(a, b)])

    # resize array to extract centers
    vec_arr = resize(vec_arr, (hifi_int, hifi_spa, 3), anti_aliasing=True)

    # make empty arrays to hold geometry calculations
    latitude = np.zeros((hifi_int, hifi_spa))*np.nan
    longitude = np.zeros((hifi_int, hifi_spa))*np.nan
    sza = np.zeros((hifi_int, hifi_spa))*np.nan
    phase_angle = np.zeros((hifi_int, hifi_spa))*np.nan
    emission_angle = np.zeros((hifi_int, hifi_spa))*np.nan
    local_time = np.zeros((hifi_int, hifi_spa))*np.nan
    context_map = np.zeros((hifi_int, hifi_spa, 3))*np.nan

    # load Mars surface map and switch longitude domain from [-180,180) to [0, 360)
    mars_surface_map = plt.imread(os.path.join(pkg_resources.resource_filename('maven_iuvs', 'ancillary/'),
                                               'mars_surface_map.jpg'))
    offset_map = np.zeros_like(mars_surface_map)
    offset_map[:, :1800, :] = mars_surface_map[:, 1800:, :]
    offset_map[:, 1800:, :] = mars_surface_map[:, :1800, :]
    mars_surface_map = offset_map

    # calculate intercept latitude and longitude using SPICE, looping through each high-resolution pixel
    target = 'Mars'
    frame = 'IAU_Mars'
    abcorr = 'LT+S'
    observer = 'MAVEN'
    body = 499  # Mars IAU code

    for i in range(hifi_int):
        for j in range(hifi_spa):
            et = et_arr[i, j]
            los_mid = vec_arr[i, j, :]

            # try to perform the SPICE calculations and record the results
            # noinspection PyBroadException
            try:

                # calculate surface intercept
                spoint, trgepc, srfvec = spice.sincpt('Ellipsoid', target, et, frame, abcorr, observer, frame, los_mid)

                # calculate illumination angles
                trgepc, srfvec, phase_for, solar, emissn = spice.ilumin('Ellipsoid', target, et, frame, abcorr,
                                                                        observer, spoint)

                # convert from rectangular to spherical coordinates
                rpoint, colatpoint, lonpoint = spice.recsph(spoint)

                # convert longitude from domain [-pi,pi) to [0,2pi)
                if lonpoint < 0.:
                    lonpoint += 2 * np.pi

                # convert ephemeris time to local solar time
                hr, mn, sc, time, ampm = spice.et2lst(et, body, lonpoint, 'planetocentric', timlen=256, ampmlen=256)

                # convert spherical coordinates to latitude and longitude in degrees
                latitude[i, j] = np.degrees(np.pi / 2 - colatpoint)
                longitude[i, j] = np.degrees(lonpoint)

                # convert illumination angles to degrees and record
                sza[i, j] = np.degrees(solar)
                phase_angle[i, j] = np.degrees(phase_for)
                emission_angle[i, j] = np.degrees(emissn)

                # convert local solar time to decimal hour
                local_time[i, j] = hr + mn / 60 + sc / 3600

                # convert latitude and longitude to pixel coordinates
                map_lat = int(np.round(np.degrees(colatpoint), 1) * 10)
                map_lon = int(np.round(np.degrees(lonpoint), 1) * 10)

                # instead of changing an alpha layer, I just multiply an RGB triplet by a scaling fraction in order to
                # make it darker; determine that scalar here based on solar zenith angle
                if twilight == 'discrete':
                    if (sza[i, j] > 90) & (sza[i, j] <= 102):
                        twilight = 0.7
                    elif sza[i, j] > 102:
                        twilight = 0.4
                    else:
                        twilight = 1
                else:
                    if (sza[i, j] > 90) & (sza[i, j] <= 102):
                        tsza = (sza[i, j]-90)*np.pi/2/12
                        twilight = np.cos(tsza)*0.6 + 0.4
                    elif sza[i, j] > 102:
                        twilight = 0.4
                    else:
                        twilight = 1

                # place the corresponding pixel from the high-resolution Mars map into the swath context map with the
                # twilight scaling
                context_map[i, j, :] = mars_surface_map[map_lat, map_lon, :] / 255 * twilight

            # if the SPICE calculation fails, this (probably) means it didn't intercept the planet
            except:
                pass

    # get mirror angles
    angles = hdul['integration'].data['mirror_deg'] * 2  # convert from mirror angles to FOV angles
    dang = np.diff(angles)[0]

    # create an meshgrid of angular coordinates for the high-resolution pixel edges
    x, y = np.meshgrid(np.linspace(0, slit_width_deg, hifi_spa + 1),
                       np.linspace(angles[0] - dang / 2, angles[-1] + dang / 2, hifi_int + 1))

    # calculate the angular separation between pixels
    dslit = slit_width_deg / hifi_spa

    # create an meshgrid of angular coordinates for the high-resolution pixel centers
    cx, cy = np.meshgrid(
        np.linspace(0 + dslit, slit_width_deg - dslit, hifi_spa),
        np.linspace(angles[0], angles[-1], hifi_int))

    # beta-flip the coordinate arrays if necessary
    if flipped:
        x = np.fliplr(x)
        y = (np.fliplr(y) - 90) / (-1) + 90
        cx = np.fliplr(cx)
        cy = (np.fliplr(cy) - 90) / (-1) + 90

    # convert longitude to [-180,180)
    longitude[np.where(longitude > 180)] -= 360

    # return the geometry and coordinate arrays
    return latitude, longitude, sza, local_time, x, y, cx, cy, context_map
Esempio n. 8
0
 def __compute_illumination_angles(self, et, spoint):
     return spice.ilumin(
         self.__method, self.__target, et, self.__frame, self.__abcorr,
         self.__observer, spoint)
    def project(self, get_illum=True, use_full_image=False):
        '''
            retrieve the planetographic coordinates of the center 
            of each pixel in the image

            Parameters
            ----------
            get_illum : bool
                flag to also retrieve illumination angles (incidence,
                emission and phase), and get a Lambertian correction 
                [default: True]
            use_full_image : bool
                flag to process the full image, or use a bounding box
                of 1.2*(planetary radius) around the center to speed up
                computation. Turn off if bounding box produces errors.
                [default: False]
        '''
        if not use_full_image:
            maxsize = np.max([self.obsa, self.obsb])*self.platecal.scale

            xstart, ystart = np.asarray(self.R2P0 - 1.2*maxsize, dtype=int)
            xend, yend     = np.asarray(self.R2P0 + 1.2*maxsize, dtype=int)
            xstart = max([xstart, 0])
            ystart = max([ystart, 0])
            xend   = min([xend, self.nx])
            yend   = min([yend, self.ny])
        else:
            xstart = 0
            xend   = self.nx
            ystart = 0
            yend   = self.ny

        ## create the empty arrays to hold the values
        imgshape = self.img.shape[:2]
        self.lat = -1000.*np.ones(imgshape)
        self.lon = -1000.*np.ones(imgshape)

        if get_illum:
            self.incidence  = np.zeros(imgshape)
            self.emission   = np.zeros(imgshape)
            self.phase      = np.zeros(imgshape)
            self.solar_corr = np.zeros(imgshape)

        for j in range(ystart, yend):
            if(j%10 == 0):
                print("\r %3d/%3d"%(j, yend), end='')
            for i in range(xstart, xend):

                ## find the vector that refers to this pixel 
                pix     = np.array([i,j], dtype=float)
                RADeci  = self.pix2radec(pix)
                veci = spiceypy.radrec(1., RADeci[0], RADeci[1])

                ## check for the intercept
                try:
                    spoint, ep, srfvec = \
                        spiceypy.sincpt(\
                            "Ellipsoid", self.target, self.et,\
                            self.target_frame, "CN", "EARTH",\
                            "J2000", veci)
                except Exception as e: 
                    continue

                ## if the intercept works, determine the planetographic
                ## lat/lon values
                loni, lati, alt = \
                    spiceypy.recpgr(self.target, spoint, \
                                    self.radii[0], self.flattening)

                self.lat[j,i] = np.degrees(lati)
                self.lon[j,i] = np.degrees(loni)

                if get_illum:
                    _, _, phasei, inci, emissi = \
                        spiceypy.ilumin("Ellipsoid", self.target, \
                                self.et, self.target_frame, "CN",\
                                "EARTH", spoint) 

                    ## apply Lambertian correction
                    mu = np.cos(emissi); mu0 = np.cos(inci)
                    self.solar_corr[j,i] = 1./mu0

                    ## save the 
                    self.phase[j,i]      = phasei
                    self.incidence[j,i]  = inci
                    self.emission[j,i]   = emissi

        img = self.img.copy()
        if get_illum:
            if(len(img.shape) > 2):
                for i in range(img.shape[2]):
                    img[:,:,i] *= self.solar_corr


        ## plot them out
        fig = plt.figure(figsize=(8,15))
        ax1 = fig.add_subplot(311)
        ax2 = fig.add_subplot(312)
        ax3 = fig.add_subplot(313)

        ax1.imshow(self.lon, vmin=0., vmax=360.)
        ax1.contour(self.lon, np.arange(0., 360., 15.), colors='k')
        ax2.imshow(self.lat, vmin=-90., vmax=90.)
        ax2.contour(self.lat, np.arange(-90, 90., 15.), colors='k')
        ax3.imshow(img)
        ax3.contour(self.lon, np.arange(0., 360., 30.), colors='k', linewidths=0.5)
        ax3.contour(self.lat, np.arange(-90, 90., 30.), colors='k', linewidths=0.5)


        ax1.set_title("Longitude")
        ax2.set_title("Latitude")

        plt.tight_layout()
        plt.show()
Esempio n. 10
0
        # Pluto-Charon angle

        vec_psurf_charon = vec_pluto_charon - vec_pluto_psurf
        ang = sp.vsep(vec_psurf_charon, vec_pluto_psurf)
        ang_pluto_charon[j, i] = ang

        # Pluto-SC angle

        vec_psurf_sc = vec_pluto_sc - vec_pluto_psurf
        ang = sp.vsep(vec_psurf_sc, vec_pluto_psurf)
        ang_pluto_sc[j, i] = ang

        # Now, do this all a second way, just to validate.

        (trgepc, srfvec, phase, solar,
         emmisn) = sp.ilumin('ELLIPSOID', 'PLUTO', et, 'IAU_PLUTO', abcorr,
                             'Charon', vec_pluto_psurf_iau)

        ang_pluto_sun_2[
            j,
            i] = solar  # Solar incidence angle, from normal, at point. THIS MATCHES -- GOOD!
        ang_pluto_charon_2[
            j,
            i] = emmisn  # Angle from surface normal, to observer. 0 .. pi. THIS MATCHES

        (trgepc, srfvec, phase, solar,
         emmisn) = sp.ilumin('ELLIPSOID', 'PLUTO', et, 'IAU_PLUTO', abcorr,
                             'New Horizons', vec_pluto_psurf_iau)
        ang_pluto_sc_2[
            j,
            i] = emmisn  # Angle from surface normal, to observer. 0 .. pi. THIS MATCHES
Esempio n. 11
0
 def _get_srfvec(self):
     if self.obs is None:
         raise ObserverNotSetError
     else:
         output = spice.ilumin("Ellipsoid", self.target, self.et, self.ref_frame, self.corr, self.obs, self.spoint)
         return output[1]