Esempio n. 1
0
    def forward(self, top_buf, top_stack_1, top_stack_2):
        if self.tracking_ln:
            top_buf = self.buf_ln(top_buf)
            top_stack_1 = self.stack1_ln(top_stack_1)
            top_stack_2 = self.stack2_ln(top_stack_2)

        if self.lateral_tracking:
            tracker_inp = self.buf(top_buf)
            tracker_inp += self.stack1(top_stack_1)
            tracker_inp += self.stack2(top_stack_2)

            batch_size = tracker_inp.size(0)

            if self.h is not None:
                tracker_inp += self.lateral(self.h)
            if self.c is None:
                self.c = to_gpu(
                    Variable(torch.from_numpy(
                        np.zeros((batch_size, self.state_size),
                                 dtype=np.float32)),
                             volatile=tracker_inp.volatile))

            # Run tracking lstm.
            self.c, self.h = lstm(self.c, tracker_inp)

            return self.h, self.c
        else:
            return torch.cat([top_buf, top_stack_1, top_stack_2], 1), None
Esempio n. 2
0
    def forward(self, top_buf, top_stack_1, top_stack_2):
        tracker_inp = self.buf(top_buf.h)
        tracker_inp += self.stack1(top_stack_1.h)
        tracker_inp += self.stack2(top_stack_2.h)

        batch_size = tracker_inp.size(0)

        if self.lateral_tracking:
            if self.h is not None:
                tracker_inp += self.lateral(self.h)
            if self.c is None:
                self.c = to_gpu(Variable(torch.from_numpy(
                    np.zeros((batch_size, self.state_size),
                                  dtype=np.float32)),
                    volatile=tracker_inp.volatile))

            # Run tracking lstm.
            self.c, self.h = lstm(self.c, tracker_inp)

            return self.h, self.c
        else:
            outp = self.transform(tracker_inp)
            return outp, None