Esempio n. 1
0
    def __init__(self,
                 filepath: str = ".",
                 savepath: str = ".",
                 nodes: Optional[Union[optplan.ProblemGraphNode, List[
                     optplan.ProblemGraphNode]]] = None) -> None:
        """Initializes the workspace.

        Args:
            filepath: Root folder for the workspace. This is used as the root
                folder for loading any auxiliary files.
            savepath: Path to save any logs.
            nodes: Optional list of nodes that exist in the graph.
        """
        self._filepath = filepath

        # Mapping from node name to the actual node. This is for node
        # definition lookup as well as to quickly see which nodes are part of
        # the graph.
        self._nodes = {}
        # List of all the objects that have been instantiated.
        self._objects = {}

        # TODO(logansu): Accept argument-less variable.
        self._objects[VARIABLE_NODE] = problem.Variable(1)

        if isinstance(nodes, collections.Iterable):
            for node in nodes:
                self._add_node(node)
        elif nodes:
            self._add_node(nodes)

        # Setup logging if applicable.
        self._logger = None
        if savepath:
            self._logger = Logger(savepath, self)
Esempio n. 2
0
def test_eval():
    param = parametrization.DirectParam((1, 2, 3, 4, 5))
    x = problem.Variable(5)
    obj = (x[0] * x[1] - x[2]**2) * (x[3] + 2 * x[4])

    assert graph_executor.eval_fun(obj, param) == -98
    np.testing.assert_array_equal(graph_executor.eval_grad(obj, param),
                                  [28, 14, -84, -7, -14])
Esempio n. 3
0
def test_eval_old_in_new():
    """Tests evals when a new-style function depends on old-style function."""
    param = parametrization.DirectParam((3, 2))
    x = problem.Variable(2)
    obj = OldPower(x[0], 2) + x[0]

    assert graph_executor.eval_fun(obj, param) == 12
    np.testing.assert_array_equal(graph_executor.eval_grad(obj, param), [7, 0])
Esempio n. 4
0
def test_eval_multiple():
    param = parametrization.DirectParam((1, 2, 3, 4, 5))
    x = problem.Variable(5)
    obj_part1 = x[3] + 2 * x[4]
    obj_part2 = x[0] * x[1] - x[2]**2
    obj = obj_part1 * obj_part2

    assert graph_executor.eval_fun([obj, obj_part1, obj_part2],
                                   param) == [-98, 14, -7]
Esempio n. 5
0
def test_eval_heavy_compute_end_on_heavy():
    param = parametrization.DirectParam((-3, 2))
    x = problem.Variable(2)

    obj = HeavyIdentity(x[0] * x[1])

    np.testing.assert_array_almost_equal(graph_executor.eval_fun(obj, param),
                                         -6)
    np.testing.assert_array_equal(graph_executor.eval_grad(obj, param),
                                  [2, -3])
Esempio n. 6
0
def test_eval_fun_no_in_node_works():
    """Tests when no input node is found.

    This can happen if the input node is fed only to the old-style function,
    which does not list its dependencies. Consequently, no input node can be
    found.
    """
    param = parametrization.DirectParam((2, ))
    x = problem.Variable(1)
    obj = OldPower(x[0], 2) + OldPower(x[0], 3)

    assert graph_executor.eval_fun(obj, param) == 12
    np.testing.assert_array_equal(graph_executor.eval_grad(obj, param), [16])
Esempio n. 7
0
def test_eval_heavy_compute():
    param = parametrization.DirectParam((-1, 2, 1.2, 3, 5.1))
    x = problem.Variable(5)

    obj = HeavyIdentity(x[1] * x[0] * x[3])

    obj2 = HeavyIdentity(x[3] + x[1]**3)

    obj3 = obj * (x[0] + 2) + obj2 - x[4]

    np.testing.assert_array_almost_equal(graph_executor.eval_fun(obj3, param),
                                         -0.1)
    np.testing.assert_array_equal(graph_executor.eval_grad(obj3, param),
                                  [0, 9, 0, -1, -1])
Esempio n. 8
0
def test_epsilon_eval():
    space = make_simspace()
    space_inst = space(1550)
    param_shape = np.prod(space.design_dims)
    vec = np.ones(param_shape)
    vec[10:20] = 0.6
    vec[30:40] = 0.2

    eps = creator_em.Epsilon(problem.Variable(1), 1550, space)

    eps_actual = eps.eval([vec])
    eps_expected = (fdfd_tools.vec(space_inst.eps_bg.grids) +
                    space_inst.selection_matrix @ vec)

    np.testing.assert_array_equal(eps_actual, eps_expected)
Esempio n. 9
0
def test_fdfd_simulation_grad():
    # Create a 3x3 2D grid to brute force check adjoint gradients.
    shape = [3, 3, 1]
    # Setup epsilon (pure vacuum).
    epsilon = [np.ones(shape) for i in range(3)]
    # Setup dxes. Assume dx = 40.
    dxes = [[np.ones(shape[i]) * 40 for i in range(3)] for j in range(2)]
    # Setup a point source in the center.
    J = [np.zeros(shape).astype(complex) for i in range(3)]
    J[2][1, 0, 0] = 1.2j
    J[2][1, 1, 0] = 1

    # Setup target fields.
    target_fields = [np.zeros(shape).astype(np.complex128) for i in range(3)]
    target_fields[2][:, :, 0] = 20j + 1
    overlap_vec = fdfd_tools.vec(target_fields)

    # TODO(logansu): Deal with this.
    class SimspaceMock:
        @property
        def dxes(self):
            return dxes

        @property
        def pml_layers(self):
            return [0] * 6

    eps_param = parametrization.DirectParam(fdfd_tools.vec(epsilon),
                                            bounds=[0, 100])
    eps_fun = problem.Variable(len(fdfd_tools.vec(epsilon)))
    sim_fun = creator_em.FdfdSimulation(
        eps=eps_fun,
        solver=local_matrix_solvers.DirectSolver(),
        wlen=1500,
        source=J,
        simspace=SimspaceMock(),
    )
    obj_fun = problem.AbsoluteValue(
        objective=creator_em.OverlapFunction(sim_fun, overlap_vec))**2

    grad_actual = obj_fun.calculate_gradient(eps_param)

    def eval_fun(vec: np.ndarray):
        eps_param.from_vector(vec)
        return obj_fun.calculate_objective_function(eps_param)

    grad_brute = eval_grad_brute(fdfd_tools.vec(epsilon), eval_fun)
    np.testing.assert_array_almost_equal(grad_actual, grad_brute, decimal=0)
Esempio n. 10
0
def test_epsilon_grad():
    # Compute derivative of `sum(epsilon)`.
    space = make_simspace()
    space_inst = space(1550)
    param_shape = np.prod(space.design_dims)
    vec = np.ones(param_shape) * 0.4
    vec[10:20] = 0.6
    vec[20:40] = 0.2

    eps = creator_em.Epsilon(problem.Variable(1), 1550, space)

    # Brute force gradient.
    fun = lambda vec: np.sum(eps.eval([vec]))
    grad_brute = eval_grad_brute(vec, fun)
    grad_actual = eps.grad([vec], np.ones(3 * np.prod(space.dims)))
    np.testing.assert_array_almost_equal(grad_actual[0], grad_brute, decimal=4)
Esempio n. 11
0
def test_plane_power_grad():
    space = Simspace(
        TESTDATA,
        optplan.SimulationSpace(
            pml_thickness=[0, 0, 0, 0, 0, 0],
            mesh=optplan.UniformMesh(dx=40),
            sim_region=optplan.Box3d(
                center=[0, 0, 0],
                extents=[80, 80, 80],
            ),
            eps_bg=optplan.GdsEps(
                gds="straight_waveguide.gds",
                mat_stack=optplan.GdsMaterialStack(
                    background=optplan.Material(mat_name="air"),
                    stack=[
                        optplan.GdsMaterialStackLayer(
                            gds_layer=[100, 0],
                            extents=[-80, 80],
                            foreground=optplan.Material(mat_name="Si"),
                            background=optplan.Material(mat_name="air"),
                        ),
                    ],
                ),
            ),
        ))

    wlen = 1550
    power_fun = poynting.PowerTransmissionFunction(
        field=problem.Variable(1),
        simspace=space,
        wlen=wlen,
        plane_slice=grid_utils.create_region_slices(space.edge_coords,
                                                    [0, 0, 0], [40, 80, 80]),
        axis=gridlock.axisvec2axis([1, 0, 0]),
        polarity=gridlock.axisvec2polarity([1, 0, 0]))

    field = np.arange(np.prod(space.dims) * 3).astype(np.complex128) * 1j

    grad_actual = power_fun.grad([field], 1)
    fun = lambda vec: power_fun.eval([vec])
    grad_brute = eval_grad_brute_wirt(field, fun)

    np.testing.assert_array_almost_equal(grad_actual[0], grad_brute, decimal=4)
Esempio n. 12
0
def test_stored_energy_grad():
    space = Simspace(
        TESTDATA,
        optplan.SimulationSpace(
            pml_thickness=[0, 0, 0, 0, 0, 0],
            mesh=optplan.UniformMesh(dx=40),
            sim_region=optplan.Box3d(
                center=[0, 0, 0],
                extents=[80, 80, 80],
            ),
            eps_bg=optplan.GdsEps(
                gds="straight_waveguide.gds",
                mat_stack=optplan.GdsMaterialStack(
                    background=optplan.Material(mat_name="air"),
                    stack=[
                        optplan.GdsMaterialStackLayer(
                            gds_layer=[100, 0],
                            extents=[-80, 80],
                            foreground=optplan.Material(mat_name="Si"),
                            background=optplan.Material(mat_name="air"),
                        ),
                    ],
                ),
            ),
        ))

    wlen = 1550
    energy_fun = stored_energy.StoredEnergyFunction(
        input_function=problem.Variable(1),
        simspace=space,
        center=[0,0,0],
        extents=[0,0,0],
        epsilon=space._eps_bg)

        plane_slice=grid_utils.create_region_slices(space.edge_coords,
                                                    [0, 0, 0], [40, 80, 80]),
        axis=gridlock.axisvec2axis([1, 0, 0]),
        polarity=gridlock.axisvec2polarity([1, 0, 0]))
Esempio n. 13
0
def test_eval_fun_multiple_variables_raises_value_error():
    with pytest.raises(ValueError, match=r"Multiple Variable"):
        param = parametrization.DirectParam((1, 2))
        x = problem.Variable(2)
        y = problem.Variable(2)
        graph_executor.eval_fun(x + y, param)
Esempio n. 14
0
def test_epsilon_string():
    space = make_simspace()
    space_inst = space(1550)
    eps = creator_em.Epsilon(problem.Variable(1), 1550, space)

    assert str(eps) == "Epsilon(1550)"