Esempio n. 1
0
class PurposeLayer(__Layer__):

    doc = param.StringField()
    name = param.StringField()
    datatype = param.IntegerField()
    symbol = param.StringField()

    def __init__(self, **kwargs):
        ElementalInitializer.__init__(self, **kwargs)

    # def __repr__(self):
    #     string = '[SPiRA: PurposeLayer] (\'{}\', datatype {}, symbol \'{}\')'
    #     return string.format(self.name, self.datatype, self.symbol)

    def __eq__(self, other):
        if isinstance(other, PurposeLayer):
            return self.key == other.key
        else:
            raise ValueError('Not Implemented!')

    def __ne__(self, other):
        if isinstance(other, PurposeLayer):
            return self.key != other.key
        else:
            raise ValueError('Not Implemented!')

    def __add__(self, other):
        if isinstance(other, PurposeLayer):
            d = self.datatype + other.datatype
        elif isinstance(other, int):
            d = self.datatype + other
        else:
            raise ValueError('Not Implemented')
        return PurposeLayer(datatype=d)

    def __iadd__(self, other):
        if isinstance(other, PurposeLayer):
            self.datatype += other.datatype
        elif isinstance(other, int):
            self.datatype += other
        else:
            raise ValueError('Not Implemented')
        return self

    def __deepcopy__(self, memo):
        return PurposeLayer(
            name=self.name,
            datatype=self.datatype,
            symbol=self.symbol
        )

    @property
    def key(self):
        return (self.datatype, self.symbol)
Esempio n. 2
0
class ArcSeries(spira.Cell):

    gdslayer = param.LayerField(number=91)
    radius = param.FloatField(default=20)
    #     radius = param.FloatField(default=20 * 1e6)
    width = param.FloatField(default=1.0)
    #     width = param.FloatField(default=1.0 * 1e6)
    angular_coverage = param.FloatField(default=30)
    num_steps = param.IntegerField(default=1)
    angle_resolution = param.FloatField(default=0.1)
    start_angle = param.IntegerField(default=0)
    direction = param.StringField(default='ccw')

    port1 = param.DataField()
    port2 = param.DataField()

    subarc = SubArcSeries

    def get_subarc_routes(self):
        D = SubArcSeries(gdslayer=self.gdslayer,
                         radius=self.radius,
                         width=self.width,
                         angular_coverage=self.angular_coverage,
                         num_steps=self.num_steps,
                         angle_resolution=self.angle_resolution,
                         start_angle=self.start_angle)

        s1 = spira.SRef(D)
        s2 = spira.SRef(D)

        s2.reflect(p1=[0, 0], p2=[1, 1])
        s2.connect(port='P2', destination=s1.ports['P2'])

        return s1, s2

    def create_elementals(self, elems):

        s1, s2 = self.get_subarc_routes()

        elems += s1
        elems += s2

        return elems

    def create_ports(self, ports):

        s1, s2 = self.get_subarc_routes()

        #         ports += s1.ports['P1'].modified_copy(name='Port_1')
        #         ports += s2.ports['P1'].modified_copy(name='Port_2')

        return ports
Esempio n. 3
0
class GradualFractal(spira.Cell):
    """
    Creates a 90-degree bent waveguide the bending radius is
    gradually increased until it reaches the minimum
    value of the radius at the "angular coverage" angle.
    It essentially creates a smooth transition to a bent waveguide
    mode. User can control number of steps provided. Direction
    determined by start angle and cw or ccw switch with the
    default 10 "num_steps" and 15 degree coverage,
    effective radius is about 1.5*radius.
    """

    gdslayer = param.LayerField(number=91)
    radius = param.FloatField(default=20)
    #     radius = param.FloatField(default=20 * 1e6)
    width = param.FloatField(default=1.0)
    #     width = param.FloatField(default=1.0 * 1e6)
    angular_coverage = param.FloatField(default=20)
    num_steps = param.IntegerField(default=5)
    angle_resolution = param.FloatField(default=0.01)
    start_angle = param.IntegerField(default=0)
    direction = param.StringField(default='ccw')

    def create_elementals(self, elems):

        D = ArcSeries(gdslayer=self.gdslayer,
                      radius=self.radius,
                      width=self.width,
                      angular_coverage=self.angular_coverage,
                      num_steps=self.num_steps,
                      angle_resolution=self.angle_resolution,
                      start_angle=self.start_angle)

        # D.xmin, D.ymin = 0, 0

        # Orient to default settings...
        # D.reflect(p1=[0,0], p2=[1,1])
        # D.reflect(p1=[0,0], p2=[1,0])

        # D.rotate(angle=self.start_angle, center=D.center)
        # D.center = [0, 0]

        s1 = spira.SRef(D)
        elems += s1

        return elems
Esempio n. 4
0
class __ProcessLayer__(Cell):
    doc = param.StringField()
    points = param.ElementListField()
    # points = param.PointArrayField()
    number = param.IntegerField()
    error_type = param.IntegerField()

    layer = param.DataField(fdef_name='create_layer')
    player = param.DataField(fdef_name='create_polygon_layer')

    def create_polygon_layer(self):
        return Polygons(shape=self.points, gdslayer=self.layer)

    def create_layer(self):
        return Layer(name=self.name, number=self.number, datatype=self.error_type)

    def create_elementals(self, elems):
        elems += self.player
        return elems
Esempio n. 5
0
class GeometryAbstract(__Geometry__):

    _ID = 0

    name = param.StringField()
    layer = param.IntegerField()
    dimension = param.IntegerField(default=2)
    algorithm = param.IntegerField(default=6)
    polygons = param.ElementListField()
    # gmsh_elements = param.ElementListField()

    create_mesh = param.DataField(fdef_name='create_meshio')
    elements = param.DataField(fdef_name='create_pygmsh_elements')

    def __init__(self, lcar=0.01, **kwargs):
        super().__init__(lcar=lcar, **kwargs)

    def create_meshio(self):
        """
        Generates a GMSH mesh, which is saved in the `debug` folder.

        Arguments
        ---------
        mesh : dict
            Dictionary containing all the necessary mesh information.
        """

        if len(self.__surfaces__()) > 1:
            self.geom.boolean_union(self.__surfaces__())

        directory = os.getcwd() + '/debug/gmsh/'
        mesh_file = '{}{}.msh'.format(directory, self.name)
        geo_file = '{}{}.geo'.format(directory, self.name)
        vtk_file = '{}{}.vtu'.format(directory, self.name)

        if not os.path.exists(directory):
            os.makedirs(directory)

        mesh_data = pygmsh.generate_mesh(self.geom,
                                         verbose=False,
                                         dim=self.dimension,
                                         prune_vertices=False,
                                         remove_faces=False,
                                         geo_filename=geo_file)

        mm = meshio.Mesh(*mesh_data)

        meshio.write(mesh_file, mm)
        meshio.write(vtk_file, mm)

        # params = {
        #     'name': self.name,
        #     'layer': spira.Layer(number=self.layer),
        #     'points': [mesh_data[0]],
        #     'cells': [mesh_data[1]],
        #     'point_data': [mesh_data[2]],
        #     'cell_data': [mesh_data[3]],
        #     'field_data': [mesh_data[4]]
        # }

        # return params

        return mesh_data

    def create_pygmsh_elements(self):
        print('number of polygons {}'.format(len(self.polygons)))

        height = 0.0
        holes = None

        elems = ElementList()
        for ply in self.polygons:
            for i, points in enumerate(ply.polygons):
                pp = numpy_to_list(points, height, unit=10e-9)
                surface_label = '{}_{}_{}_{}'.format(ply.gdslayer.number,
                                                     ply.gdslayer.datatype,
                                                     GeometryAbstract._ID, i)
                gp = self.geom.add_polygon(pp,
                                           lcar=1.0,
                                           make_surface=True,
                                           holes=holes)
                self.geom.add_physical_surface(gp.surface, label=surface_label)
                elems += [gp.surface, gp.line_loop]
                GeometryAbstract._ID += 1

        return elems

    def extrude_surfaces(self, geom, surfaces):
        """ This extrudes the surface to a 3d volume element. """

        for i, surface in enumerate(surfaces):
            width = float(self.width) * scale

            ex = self.geom.extrude(surface, [0, 0, width])

            unique_id = '{}_{}'.format(polygons._id, i)

            volume = self.geom.add_physical_volume(ex[1], unique_id)

            self.extrude.append(ex[1])
            self.volume.append(volume)

    def geom_holes(self):
        """
        Create a list of gmsh surfaces from the mask polygons
        generated by the gdsii package.

        Arguments
        ---------
        surfaces : list
            list of pygmsh surface objects.
        """

        print('number of polygons {}'.format(len(self.e.polygons)))

        dim = 2
        height = 0.0
        material_stack = None

        for i, points in enumerate(self.e.polygons):
            if dim == 3:
                height = self.vertical_position(material_stack)

            pp = numpy_to_list(points, height, unit=self.e.unit)

            gp = geom.add_polygon(pp, lcar=1.0, make_surface=true)

            line_loops.append(gp.line_loop)

    def flat_copy(self, level=-1, commit_to_gdspy=False):
        return self

    def flatten(self):
        return [self]

    def commit_to_gdspy(self, cell):
        pass

    def transform(self, transform):
        return self
Esempio n. 6
0
class __DesignRule__(ElementalInitializer):
    violate = param.BoolField()
    doc = param.StringField()
    name = param.StringField()
Esempio n. 7
0
class __DeviceLayer__(Cell):
    doc = param.StringField()
    name = param.StringField()
Esempio n. 8
0
class MeshAbstract(__Mesh__):
    """ Class that connects a meshio generated mesh with
    a networkx generated graph of the set of polygons. """

    name = param.StringField()
    layer = param.LayerField()
    point_data = param.ElementListField()
    cell_data = param.ElementListField()
    field_data = param.ElementListField()
    node_sets = param.ElementListField()
    gmsh_periodic = param.ElementListField()

    mesh_graph = param.DataField(fdef_name='create_mesh_graph')

    def __init__(self, polygons, points, cells, **kwargs):
        super().__init__(polygons, points, cells, **kwargs)

    def create_mesh_graph(self):
        """ Create a graph from the meshed geometry. """

        ll = len(self.points)
        A = np.zeros((ll, ll), dtype=np.int64)

        for n, triangle in enumerate(self.__triangles__()):
            self.add_edges(n, triangle, A)

        for n, triangle in enumerate(self.__triangles__()):
            self.add_positions(n, triangle)

    def add_edges(self, n, tri, A):
        def update_adj(self, t1, adj_mat, v_pair):
            if (adj_mat[v_pair[0]][v_pair[1]] != 0):
                t2 = adj_mat[v_pair[0]][v_pair[1]] - 1
                self.g.add_edge(t1, t2, label=None)
            else:
                adj_mat[v_pair[0]][v_pair[1]] = t1 + 1
                adj_mat[v_pair[1]][v_pair[0]] = t1 + 1

        v1 = [tri[0], tri[1], tri[2]]
        v2 = [tri[1], tri[2], tri[0]]

        for v_pair in list(zip(v1, v2)):
            update_adj(self, n, A, v_pair)

    def add_positions(self, n, tri):
        pp = self.points
        n1, n2, n3 = pp[tri[0]], pp[tri[1]], pp[tri[2]]

        sum_x = 1e+8 * (n1[0] + n2[0] + n3[0]) / 3.0
        sum_y = 1e+8 * (n1[1] + n2[1] + n3[1]) / 3.0

        self.g.node[n]['vertex'] = tri
        self.g.node[n]['pos'] = [sum_x, sum_y]

    def __triangles__(self):
        if 'triangle' not in self.cells:
            raise ValueError('Triangle not found in cells')
        return self.cells['triangle']

    def __physical_triangles__(self):
        if 'triangle' not in self.cell_data[0]:
            raise ValueError('Triangle not in meshio cell_data')
        if 'gmsh:physical' not in self.cell_data[0]['triangle']:
            raise ValueError('Physical not found ing meshio triangle')
        return self.cell_data[0]['triangle']['gmsh:physical'].tolist()

    def __layer_triangles_dict__(self):
        """
        Arguments
        ---------
        tri : list
            The surface_id of the triangle
            corresponding to the index value.
        key -> 5_0_1 (layer_datatype_polyid)
        value -> [1 2] (1=surface_id 2=triangle)
        """

        triangles = {}
        for name, value in self.field_data[0].items():
            for n in self.g.nodes():
                surface_id = value[0]
                ptriangles = self.__physical_triangles__()
                if ptriangles[n] == surface_id:
                    layer = int(name.split('_')[0])
                    datatype = int(name.split('_')[1])
                    key = (layer, datatype)
                    if key in triangles:
                        triangles[key].append(n)
                    else:
                        triangles[key] = [n]
        return triangles

    def __triangle_nodes__(self):
        """ Get triangle field_data in list form. """

        nodes = []
        for v in self.__layer_triangles_dict__().values():
            nodes.extend(v)

        triangles = {}
        for n in nodes:
            for node, triangle in enumerate(self.__triangles__()):
                if n == node:
                    triangles[n] = triangle
        return triangles

    def __point_data__(self):
        pass

    def flat_copy(self, level=-1, commit_to_gdspy=False):
        return self

    def flatten(self):
        return [self]

    def commit_to_gdspy(self, cell):
        pass

    def transform(self, transform):
        return self
Esempio n. 9
0
class __Manhattan__(spira.Cell):

    port1 = param.DataField()
    port2 = param.DataField()

    length = param.FloatField(default=20)
    gdslayer = param.LayerField(number=13)
    radius = param.IntegerField(default=1)
    bend_type = param.StringField(default='circular')

    b1 = param.DataField(fdef_name='create_arc_bend_1')
    b2 = param.DataField(fdef_name='create_arc_bend_2')

    p1 = param.DataField(fdef_name='create_port1_position')
    p2 = param.DataField(fdef_name='create_port2_position')

    quadrant_one = param.DataField(fdef_name='create_quadrant_one')
    quadrant_two = param.DataField(fdef_name='create_quadrant_two')
    quadrant_three = param.DataField(fdef_name='create_quadrant_three')
    quadrant_four = param.DataField(fdef_name='create_quadrant_four')

    def _generate_route(self, p1, p2):
        route = RouteShape(port1=p1,
                           port2=p2,
                           path_type='straight',
                           width_type='straight')
        R1 = RouteBasic(route=route, connect_layer=self.gdslayer)
        r1 = spira.SRef(R1)
        r1.rotate(angle=p2.orientation - 180, center=R1.port1.midpoint)
        r1.move(midpoint=(0, 0), destination=p1.midpoint)
        return r1

    def create_port1_position(self):
        p1 = [self.port1.midpoint[0], self.port1.midpoint[1]]
        if self.port1.orientation == 90:
            p1 = [self.port1.midpoint[1], -self.port1.midpoint[0]]
        if self.port1.orientation == 180:
            p1 = [-self.port1.midpoint[0], -self.port1.midpoint[1]]
        if self.port1.orientation == 270:
            p1 = [-self.port1.midpoint[1], self.port1.midpoint[0]]
        return p1

    def create_port2_position(self):
        p2 = [self.port2.midpoint[0], self.port2.midpoint[1]]
        if self.port1.orientation == 90:
            p2 = [self.port2.midpoint[1], -self.port2.midpoint[0]]
        if self.port1.orientation == 180:
            p2 = [-self.port2.midpoint[0], -self.port2.midpoint[1]]
        if self.port1.orientation == 270:
            p2 = [-self.port2.midpoint[1], self.port2.midpoint[0]]
        return p2

    def create_arc_bend_1(self):
        if self.bend_type == 'circular':
            B1 = Arc(shape=ArcRoute(
                radius=self.radius,
                width=self.port1.width,
                gdslayer=self.gdslayer,
                # gdslayer=spira.Layer(number=18),
                start_angle=0,
                theta=90))
            return spira.SRef(B1)

    def create_arc_bend_2(self):
        if self.bend_type == 'circular':
            B2 = Arc(shape=ArcRoute(
                radius=self.radius,
                width=self.port1.width,
                gdslayer=self.gdslayer,
                # gdslayer=spira.Layer(number=18),
                start_angle=0,
                theta=-90))
            return spira.SRef(B2)
Esempio n. 10
0
class PhysicalLayer(__Layer__):
    """

    """

    doc = param.StringField()
    layer = param.LayerField()
    purpose = PurposeLayerField()
    data = param.DataField(default=ProcessTree())

    def __init__(self, **kwargs):
        ElementalInitializer.__init__(self, **kwargs)

    def __repr__(self):
        string = '[SPiRA: PhysicalLayer] (layer \'{}\', symbol \'{}\')'
        return string.format(self.layer.name, self.purpose.symbol)

    def __str__(self):
        return self.__repr__()

    def __eq__(self, other):
        if isinstance(other, PhysicalLayer):
            return other.key == self.key
        # elif isinstance(other, Layer):
        #     return other.number == self.layer.number
        elif isinstance(other, int):
            return other == self.layer.number
        else:
            raise ValueError('Not Implemented!')

    def __neq__(self, other):
        if isinstance(other, PhysicalLayer):
            return other.key != self.key
        # elif isinstance(other, Layer):
        #     return other.number != self.layer.number
        elif isinstance(other, int):
            return other != self.layer.number
        else:
            raise ValueError('Not Implemented!')
    
    # def __add__(self, other):
    #     if isinstance(other, PhysicalLayer):
    #         d = self.datatype + other.datatype
    #     elif isinstance(other, int):
    #         d = self.datatype + other
    #     else:
    #         raise ValueError('Not Implemented')
    #     return PurposeLayer(datatype=d)

    # def __iadd__(self, other):
    #     if isinstance(other, PhysicalLayer):
    #         self.datatype += other.datatype
    #     elif isinstance(other, int):
    #         self.datatype += other
    #     else:
    #         raise ValueError('Not Implemented')
    #     return self

    @property
    def key(self):
        return (self.layer.number, self.purpose.symbol)
Esempio n. 11
0
class RouteShape(shapes.Shape):

    port1 = param.DataField()
    port2 = param.DataField()

    num_path_pts = param.IntegerField(default=99)

    path_type = param.StringField(default='sine')
    width_type = param.StringField(default='straight')
    width1 = param.FloatField(default=None)
    width2 = param.FloatField(default=None)

    x_dist = param.FloatField()
    y_dist = param.FloatField()

    def create_points(self, points):

        point_a = np.array(self.port1.midpoint)
        if self.width1 is None:
            self.width1 = self.port1.width
        point_b = np.array(self.port2.midpoint)
        if self.width2 is None:
            self.width2 = self.port2.width
        if round(
                abs(mod(self.port1.orientation - self.port2.orientation, 360)),
                3) != 180:
            raise ValueError('Ports do not face eachother.')
        orientation = self.port1.orientation - 90

        separation = point_b - point_a
        distance = norm(separation)
        rotation = np.arctan2(separation[1], separation[0]) * 180 / pi
        angle = rotation - orientation
        forward_distance = distance * cos(angle * pi / 180)
        lateral_distance = distance * sin(angle * pi / 180)

        xf = forward_distance
        yf = lateral_distance

        self.x_dist = xf
        self.y_dist = yf

        if self.path_type == 'straight':
            curve_fun = lambda t: [xf * t, yf * t]
            curve_deriv_fun = lambda t: [xf + t * 0, 0 + t * 0]
        if self.path_type == 'sine':
            curve_fun = lambda t: [xf * t, yf * (1 - cos(t * pi)) / 2]
            curve_deriv_fun = lambda t: [
                xf + t * 0, yf * (sin(t * pi) * pi) / 2
            ]

        if self.width_type == 'straight':
            width_fun = lambda t: (self.width2 - self.width1) * t + self.width1
        if self.width_type == 'sine':
            width_fun = lambda t: (self.width2 - self.width1) * (1 - cos(
                t * pi)) / 2 + self.width1

        route_path = gdspy.Path(width=self.width1, initial_point=(0, 0))

        route_path.parametric(curve_fun,
                              curve_deriv_fun,
                              number_of_evaluations=self.num_path_pts,
                              max_points=199,
                              final_width=width_fun,
                              final_distance=None)

        points = route_path.polygons

        return points
Esempio n. 12
0
class PortAbstract(__Port__):

    name = param.StringField()
    midpoint = param.MidPointField()
    orientation = param.IntegerField()
    parent = param.DataField()
    gdslayer = param.LayerField(name='PortLayer', number=64)
    poly_layer = param.LayerField(name='PortLayer', number=64)
    text_layer = param.LayerField(name='PortLayer', number=63)

    def __init__(self, port=None, polygon=None, **kwargs):
        super().__init__(**kwargs)

        self.orientation = np.mod(self.orientation, 360)

        L = spira.Label(position=self.midpoint,
                        text=self.name,
                        gdslayer=self.gdslayer,
                        texttype=self.text_layer.number)
        self.label = L
        self.arrow = None

    @property
    def endpoints(self):
        dx = self.width / 2 * np.cos((self.orientation - 90) * np.pi / 180)
        dy = self.width / 2 * np.sin((self.orientation - 90) * np.pi / 180)
        left_point = self.midpoint - np.array([dx, dy])
        right_point = self.midpoint + np.array([dx, dy])
        return np.array([left_point, right_point])

    @endpoints.setter
    def endpoints(self, points):
        p1, p2 = np.array(points[0]), np.array(points[1])
        self.midpoint = (p1 + p2) / 2
        dx, dy = p2 - p1
        self.orientation = np.arctan2(dx, dy) * 180 / np.pi
        self.width = np.sqrt(dx**2 + dy**2)

    @property
    def normal(self):
        dx = np.cos((self.orientation) * np.pi / 180)
        dy = np.sin((self.orientation) * np.pi / 180)
        return np.array([self.midpoint, self.midpoint + np.array([dx, dy])])

    def point_inside(self, polygon):
        return pyclipper.PointInPolygon(self.midpoint, polygon) != 0

    def flat_copy(self, level=-1, commit_to_gdspy=False):
        c_port = self.modified_copy(midpoint=self.midpoint)
        if commit_to_gdspy:
            self.gdspy_write = True
        return c_port

    def commit_to_gdspy(self, cell):
        if self.__repr__() not in list(__Port__.__committed__.keys()):
            # self.polygon.rotate(angle=self.orientation)
            # self.polygon.move(midpoint=self.polygon.center, destination=self.midpoint)
            self.polygon.commit_to_gdspy(cell)
            self.label.commit_to_gdspy(cell)
            if self.arrow:
                # print(self.orientation)
                # self.arrow.rotate(angle=45)
                # self.arrow.rotate(angle=90)
                # self.arrow.rotate(angle=90-self.orientation)
                self.arrow.move(midpoint=self.arrow.center,
                                destination=self.midpoint)
                self.arrow.commit_to_gdspy(cell)
            __Port__.__committed__.update({self.__repr__(): self})

    def reflect(self):
        """ Reflect around the x-axis. """
        self.midpoint = [self.midpoint[0], -self.midpoint[1]]
        self.orientation = -self.orientation
        self.orientation = np.mod(self.orientation, 360)

        self.polygon.reflect()

        if self.arrow:
            self.arrow.reflect()

        return self

    def rotate(self, angle=45, center=(0, 0)):
        """ Rotate port around the center with angle. """
        self.midpoint = self.__rotate__(self.midpoint,
                                        angle=angle,
                                        center=center)
        self.orientation += angle
        self.orientation = np.mod(self.orientation, 360)

        self.polygon.rotate(angle=self.orientation)

        if self.arrow:
            # self.arrow.rotate(angle=angle)
            self.arrow.rotate(angle=np.mod(angle, 90))

        return self

    def translate(self, dx, dy):
        """ Translate port by dx and dy. """
        self.midpoint = self.midpoint + np.array([dx, dy])
        return self

    def move(self, midpoint=(0, 0), destination=None, axis=None):
        from spira.gdsii.elemental.port import __Port__

        if destination is None:
            destination = midpoint
            midpoint = [0, 0]

        if issubclass(type(midpoint), __Port__):
            o = midpoint.midpoint
        elif np.array(midpoint).size == 2:
            o = midpoint
        elif midpoint in self.ports:
            o = self.ports[midpoint].midpoint
        else:
            raise ValueError("[PHIDL] [DeviceReference.move()] ``midpoint`` " +
                             "not array-like, a port, or port name")

        if issubclass(type(destination), __Port__):
            d = destination.midpoint
        elif np.array(destination).size == 2:
            d = destination
        elif destination in self.ports:
            d = self.ports[destination].midpoint
        else:
            raise ValueError(
                "[PHIDL] [DeviceReference.move()] ``destination`` " +
                "not array-like, a port, or port name")

        if axis == 'x':
            d = (d[0], o[1])
        if axis == 'y':
            d = (o[0], d[1])

        dx, dy = np.array(d) - o

        self.translate(dx, dy)

        self.label.move(midpoint=self.label.position,
                        destination=self.midpoint)
        self.polygon.move(midpoint=self.polygon.center,
                          destination=self.midpoint)
        if self.arrow:
            self.arrow.move(midpoint=self.polygon.center,
                            destination=self.midpoint)

        return self

    def stretch(self, stretch_class):
        """ Stretch port by with the given stretch class. """
        p = stretch_class.apply(self.midpoint)
        self.midpoint = p
        return self

    def transform(self, T):
        """ Transform port with the given transform class. """
        if T['reflection']:
            self.reflect()
            self.label.reflect()
            self.polygon.reflect()
            if self.arrow:
                self.arrow.reflect()
        if T['rotation']:
            self.rotate(angle=T['rotation'], center=(0, 0))
            self.label.rotate(angle=T['rotation'])
            self.polygon.rotate(angle=T['rotation'])
            if self.arrow:
                self.arrow.rotate(angle=T['rotation'])
        if T['midpoint']:
            self.translate(dx=T['midpoint'][0], dy=T['midpoint'][1])
            self.label.move(midpoint=self.label.position,
                            destination=self.midpoint)
            self.polygon.move(midpoint=self.polygon.center,
                              destination=self.midpoint)
            if self.arrow:
                self.arrow.move(midpoint=self.polygon.center,
                                destination=self.midpoint)

        return self

    def _update(self, name, layer):
        ll = deepcopy(layer)
        ll.datatype = 65
        self.polygon.gdslayer = ll
        self.label.gdslayer = ll
Esempio n. 13
0
class LabelAbstract(__Label__):

    gdslayer = param.LayerField()
    text = param.StringField()
    str_anchor = param.StringField(default='o')
    rotation = param.FloatField(default=0)
    magnification = param.FloatField(default=1)
    reflection = param.BoolField(default=False)
    texttype = param.IntegerField()
    gdspy_commit = param.BoolField()

    def __init__(self, position, **kwargs):
        super().__init__(position, **kwargs)

    def commit_to_gdspy(self, cell):
        if self.__repr__() not in list(LabelAbstract.__committed__.keys()):
            L = gdspy.Label(self.text,
                deepcopy(self.position),
                anchor='o',
                rotation=self.rotation,
                magnification=self.magnification,
                x_reflection=self.reflection,
                layer=self.gdslayer.number,
                texttype=self.texttype
            )
            cell.add(L)
            LabelAbstract.__committed__.update({self.__repr__():L})
        else:
            cell.add(LabelAbstract.__committed__[self.__repr__()])

    def reflect(self, p1=(0,1), p2=(0,0)):
        self.position = [self.position[0], -self.position[1]]
        self.rotation = self.rotation * (-1)
        self.rotation = np.mod(self.rotation, 360)
        return self

    def rotate(self, angle=45, center=(0,0)):
        self.position = self.__rotate__(self.position, angle=angle, center=[0, 0])
        self.rotation += angle
        self.rotation = np.mod(self.rotation, 360)
        return self

    def point_inside(self, polygon):
        return pyclipper.PointInPolygon(self.position, polygon) != 0

    def transform(self, transform):
        if transform['reflection']:
            self.reflect(p1=[0,0], p2=[1,0])
        if transform['rotation']:
            self.rotate(angle=transform['rotation'])
        if transform['midpoint']:
            self.translate(dx=transform['midpoint'][0], dy=transform['midpoint'][1])
        return self

    def flat_copy(self, level=-1, commit_to_gdspy=False):
        c_label = self.modified_copy(position=self.position)
        if commit_to_gdspy:
            self.gdspy_commit = True
        return c_label

    def move(self, midpoint=(0,0), destination=None, axis=None):
        from spira.gdsii.elemental.port import __Port__

        if destination is None:
            destination = midpoint
            midpoint = [0,0]

        if issubclass(type(midpoint), __Port__):
            o = midpoint.midpoint
        elif np.array(midpoint).size == 2:
            o = midpoint
        elif midpoint in self.ports:
            o = self.ports[midpoint].midpoint
        else:
            raise ValueError("[PHIDL] [DeviceReference.move()] ``midpoint`` " +
                             "not array-like, a port, or port name")

        if issubclass(type(destination), __Port__):
            d = destination.midpoint
        elif np.array(destination).size == 2:
            d = destination
        elif destination in self.ports:
            d = self.ports[destination].midpoint
        else:
            raise ValueError("[PHIDL] [DeviceReference.move()] ``destination`` " +
                             "not array-like, a port, or port name")

        if axis == 'x':
            d = (d[0], o[1])
        if axis == 'y':
            d = (o[0], d[1])

        dx, dy = np.array(d) - o

        super().translate(dx, dy)

        return self
Esempio n. 14
0
class CellAbstract(__Cell__):

    name = param.StringField()
    ports = param.ElementListField(fdef_name='create_ports')
    elementals = param.ElementListField(fdef_name='create_elementals')

    def create_elementals(self, elems):
        result = ElementList()
        return result

    def create_ports(self, ports):
        return ports

    def flatten(self):
        self.elementals = self.elementals.flatten()
        return self.elementals

    def flat_copy(self, level=-1, commit_to_gdspy=False):
        self.elementals = self.elementals.flat_copy(level, commit_to_gdspy)
        return self.elementals

    def dependencies(self):
        deps = self.elementals.dependencies()
        deps += self
        return deps

    def commit_to_gdspy(self):
        cell = gdspy.Cell(self.name, exclude_from_current=True)
        for e in self.elementals:
            if issubclass(type(e), Cell):
                for elem in e.elementals:
                    elem.commit_to_gdspy(cell=cell)
                for port in e.ports:
                    port.commit_to_gdspy(cell=cell)
            elif not isinstance(e, (SRef, ElementList, Graph, Mesh)):
                e.commit_to_gdspy(cell=cell)
        return cell

    def move(self, midpoint=(0, 0), destination=None, axis=None):
        """
        Moves elements of the Device from the midpoint point to
        the destination. Both midpoint and destination can be 1x2
        array-like, Port, or a key corresponding to
        one of the Ports in this device
        """

        if destination is None:
            destination = midpoint
            midpoint = [0, 0]

        if issubclass(type(midpoint), __Port__):
            o = midpoint.midpoint
        elif np.array(midpoint).size == 2:
            o = midpoint
        elif midpoint in self.ports:
            o = self.ports[midpoint].midpoint
        else:
            raise ValueError('[DeviceReference.move()] ``midpoint`` ' + \
                             'not array-like, a port, or port name')

        if issubclass(type(destination), __Port__):
            d = destination.midpoint
        elif np.array(destination).size == 2:
            d = destination
        elif destination in self.ports:
            d = self.ports[destination].midpoint
        else:
            raise ValueError('[DeviceReference.move()] ``destination`` ' + \
                             'not array-like, a port, or port name')

        if axis == 'x':
            d = (d[0], o[1])
        if axis == 'y':
            d = (o[0], d[1])

        dx, dy = np.array(d) - o

        for e in self.elementals:
            if issubclass(type(e), (LabelAbstract, PolygonAbstract)):
                e.translate(dx, dy)
            if isinstance(e, (Cell, SRef)):
                e.move(destination=d, midpoint=o)

        for p in self.ports:
            mc = np.array(p.midpoint) + np.array(d) - np.array(o)
            p.move(midpoint=p.midpoint, destination=mc)

        return self

    def reflect(self, p1=(0, 1), p2=(0, 0)):
        """ Reflects the cell around the line [p1, p2]. """
        for e in self.elementals:
            if not issubclass(type(e), (LabelAbstract, __Port__)):
                e.reflect(p1, p2)
        for p in self.ports:
            p.midpoint = self.__reflect__(p.midpoint, p1, p2)
            phi = np.arctan2(p2[1] - p1[1], p2[0] - p1[0]) * 180 / np.pi
            p.orientation = 2 * phi - p.orientation
        return self

    def rotate(self, angle=45, center=(0, 0)):
        """ Rotates the cell with angle around a center. """
        if angle == 0:
            return self
        for e in self.elementals:
            if issubclass(type(e), PolygonAbstract):
                e.rotate(angle=angle, center=center)
            elif isinstance(e, SRef):
                e.rotate(angle, center)
        ports = self.ports
        self.ports = ElementList()
        for p in ports:
            if issubclass(type(p), __Port__):
                p.midpoint = self.__rotate__(p.midpoint, angle, center)
                p.orientation = np.mod(p.orientation + angle, 360)
                self.ports += p
        return self

    def get_ports(self, level=None):
        """ Returns copies of all the ports of the Device """
        port_list = [p._copy() for p in self.ports]
        if level is None or level > 0:
            for r in self.elementals.sref:
                if level is None:
                    new_level = None
                else:
                    new_level = level - 1

                ref_ports = r.ref.get_ports(level=new_level)

                tf = {
                    'midpoint': r.midpoint,
                    'rotation': r.rotation,
                    'magnification': r.magnification,
                    'reflection': r.reflection
                }

                ref_ports_transformed = []
                for rp in ref_ports:
                    new_port = rp._copy()
                    new_port = new_port.transform(tf)
                    ref_ports_transformed.append(new_port)
                port_list += ref_ports_transformed
        return port_list