Esempio n. 1
0
def splitting(pair,baz):
    """
    Function for carrying out the shear wave splitting analysis.
    All three methods from SplitwavePy (EigenM,TransM and CrossM) are performed here
    """
###################################################
#   Measure Splitiing using Eigenvalue Minimisation
    eigm = sw.EigenM(pair)
###################################################
#   Measure Splitting using Cross Correlation
    xcor = sw.CrossM(pair)
###################################################
#   Measure Splitting using transverse Minimisation
    trans = sw.TransM(pair,baz)

    return eigm, xcor, trans
def split_measure(pair,tt):
    """
    Function for Picking the window for a provded pair object and then measure the splitting

    tt - [s] predicted traveltime for the phase you are trying to window relative to the event origin time (t0)
    """
    pair.plot(pick=True,marker = tt) # Plots the window picker.
    split = sw.EigenM(pair,lags=(4,) )

    fig = plt.figure(figsize=(12,6))
    eigen_plot(split,fig) #Call function eigen_plot to plot splititng messuremnt

    cid = fig.canvas.mpl_connect('key_press_event',interact)
    plt.show(fig)
    fig.canvas.mpl_disconnect(cid)
    return split, pair.wbeg(), pair.wend(),fig
def Splitwave_EigenM(st_cut, plot=False):
    # get data into Pair object and plot
    tmp = st_cut
    north = tmp[1].data
    east = tmp[0].data
    sample_interval = tmp[0].stats.delta
    realdata = sw.Pair(north, east, delta=sample_interval)
    ## write something for time window
    t1 = 10
    t2 = 50
    realdata.set_window(t1, t2)
    # realdata.plot()

    measure = sw.EigenM(realdata)

    if plot == True:
        m.plot()

    return measure.fast, measure.dfast, round(m.lag, 4), round(m.dlag, 4)
Esempio n. 4
0
    def test_pickle_EigenM_io(self):

        # generate an eigenM object
        a = sw.EigenM(delta=0.1)

        # save to file
        filename = 'temp.eigm'
        a.save(filename)

        # load
        b = sw.load(filename)

        # check they are the same
        assert a == b

        # cleanup
        try:
            os.remove(filename)
        except OSError:
            print("Error: cleanup failed for some reason")
def read_data(path):
    try:
        dfile = os.listdir('C:/Users/kkapa/Desktop/RAJ-SKS')
        loop = len(dfile)
        inc = 0
    except:
        raise Exception("file not found")

    while (inc != loop - 1 and inc != loop - 2 and inc != loop - 3):

        s1, s2, s3 = '', '', ''
        refile = ''

        while (True):

            try:
                ext = dfile[inc][-3::1]
                if (ext == 'sac' or ext == 'SAC'):
                    s1 += dfile[inc]
                    refile += dfile[inc]
                    inc += 1
                    # print(s1)
                    break
                else:
                    inc += 1
            except:
                inc += 1

        while (True):
            try:
                ext = dfile[inc][-3::1]
                if (ext == 'sac' or ext == 'SAC'):
                    s2 += dfile[inc]
                    inc += 1
                    # print(s2)
                    break
                else:
                    inc += 1
            except:
                inc += 1

        while (True):
            try:
                ext = dfile[inc][-3::1]
                if (ext == 'sac' or ext == 'SAC'):
                    s3 += dfile[inc]
                    inc += 1
                    # print(s3)
                    break
                else:
                    inc += 1
            except:
                inc += 1

        st = read(path + '/' + s1, debug_headers=True) + read(
            path + '/' + s2, debug_headers=True) + read(path + '/' + s3,
                                                        debug_headers=True)

        # st = read('2011.052.10.57.52.4000.XX.KTL.00.BHE.M.sac', debug_headers=True)
        # st += read('2011.052.10.57.52.4000.XX.KTL.00.BHN.M.sac', debug_headers=True)
        # st += read('2011.052.10.57.52.4000.XX.KTL.00.BHZ.M.sac', debug_headers=True)
        #2011.052.10.57.52.4000.XX.KTL.00.BHZ.M   2011.052.10.57.52.4000.XX.KTL.00.BHN.M    2011.052.10.57.52.4000.XX.KTL.00.BHE.M
        # for
        #extarcting the required information form the data
        tr = st[0]
        # print(tr.stats)
        # st.plot()
        evtime = tr.stats['starttime']
        endtime = tr.stats['endtime']
        tr = tr.stats['sac']
        tr = dict(tr)
        b = tr['b']
        evla = tr['evla']
        evlo = tr['evlo']
        stla = tr['stla']
        stlo = tr['stlo']
        evdp = tr['evdp']
        model = TauPyModel('iasp91')
        arrivals = model.get_travel_times_geo(evdp,
                                              evla,
                                              evlo,
                                              stla,
                                              stlo,
                                              phase_list=['SKS'])
        skstime = evtime + arrivals[0].time - b
        # print(skstime)

        #applying filters

        dist, az, baz = geodetics.base.gps2dist_azimuth(evla, evlo, stla, stlo)

        figurefile = path + '/' + refile[0:30]
        resultfile = refile[0:30] + '_results.txt'
        resultfile = path + '/' + resultfile
        f = open(resultfile, 'w')
        # f=open('2011.052.10.57.52'+'_result1.txt','w')
        f.write('  EventId' + '\t    ' + 'Baz' + '\t\t' + ' filter' + '\t\t' +
                'SI' + '\t' + 'Split/Null' + '\t\t\t' + 'EigenM' + '\t\t\t' +
                ' TransM' + '\t\t\t' + ' CrossM' + '\t\t\t\t' + '\n')
        f.write('2011.052.10.57.52  ' + str(round(baz, 2)) + '\t' + 'f1' +
                '\t' + 'f2' + '\t' + '\t' + '\t\t' + '|' + 'phi' + '\t' +
                'dev' + '\t' + 't' + '\t' + 'dt' + '\t' + '|' + 'phi' + '\t' +
                'dev' + '\t' + 't' + '\t' + 'dt' + '\t' + '|' + 'phi' + '\t' +
                'dev' + '\t' + 't' + '\t' + 'dt' + '\t' + '\n')
        f.close()

        for j in range(len(f1)):

            st.filter("bandpass", freqmin=f1[j], freqmax=f2[j])
            # st.plot()
            # trim around SKS
            st.trim(skstime - minsks, skstime + maxsks)
            # st.plot()

            #creating pair
            north = st[1].data
            east = st[0].data
            sample_interval = st[0].stats.delta
            # print(sample_interval)
            realdata = sw.Pair(north, east, delta=sample_interval)
            si = realdata.splitting_intensity()
            x, y = realdata.cordinatewindow()
            diff = int(y - x) - windowsize
            # realdata.plot()

            try:
                #initial EigenM
                measure = sw.EigenM(realdata)
                temp = measure.measurements()
                print(-1, temp)
                temp = list(temp)
                temp.append(-1)
                m = []
                m.append(temp)
                #initial TransM
                measure1 = sw.TransM(realdata, pol=baz)
                temp = measure1.measurements()
                print(-1, temp)
                temp = list(temp)
                temp.append(-1)
                m1 = []
                m1.append(temp)

                #initial CrossM
                measure2 = sw.CrossM(realdata)
                temp = measure2.measurements()
                print(-1, temp)
                temp = list(temp)
                temp.append(-1)
                m2 = []
                m2.append(temp)
            except:
                print("please check this data manually canot apply filter ",
                      j + 1)
                print("for file names")
                print(s1, s2, s3)
                continue

            #setting windows

            for i in range(diff):

                a = realdata
                # a.plot()

                try:
                    a.set_window(x + i, x + windowsize + i)
                    # a.plot()

                    try:
                        #EigenM
                        measure = sw.EigenM(a)
                        temp = measure.measurements()
                        print(i, measure.measurements())
                        temp = list(temp)
                        temp.append(i)
                        m.append(temp)

                        #TransM

                        measure1 = sw.TransM(realdata, pol=baz)
                        temp = measure1.measurements()
                        print(i, measure1.measurements())
                        temp = list(temp)
                        temp.append(i)
                        m1.append(temp)

                        #CrossM

                        measure2 = sw.CrossM(a)
                        temp = measure2.measurements()
                        print(i, measure2.measurements())
                        temp = list(temp)
                        temp.append(i)
                        m2.append(temp)
                    except:
                        continue
                except:
                    continue
            try:
                index, ti = bestvalue(m)
                print(index)
                phi, dev, t, dt = m[ti][0], m[ti][1], m[ti][2], m[ti][3]
                a = realdata
                if (index == -1):
                    a.set_window(x, y)
                else:
                    a.set_window(x + index, x + windowsize + index)
                # a.plot()
                measure = sw.EigenM(a)
                # measure.plot()
                fname = figurefile + '_EigenM_' + str(j) + '.pdf'
                # to save the plot pass 'save' and file name
                # to save and show the plot pass 'showandsave' and file name
                #to show the plot pass nothing

                measure.plot('save', fname)

                # f=open('2011.052.10.57.52'+'_result.txt','a')
                # f.write('eigenm'+'\t'+str(f1[j])+'\t'+str(f2[j])+'\t'+str(phi)+'\t'+str(dev)+'\t'+str(t)+'\t'+str(dt)+'\n')
                # f.close()
            except:
                print("not saved")
                continue

            try:
                index, ti = bestvalue(m1)
                print(index)
                phi1, dev1, t1, dt1 = m1[ti][0], m1[ti][1], m1[ti][2], m1[ti][
                    3]

                a = realdata
                if (index == -1):
                    a.set_window(x, y)
                else:
                    a.set_window(x + index, x + windowsize + index)
                # a.plot()
                measure1 = sw.TransM(a, pol=baz)
                # measure1.plot()
                fname = figurefile + '_TransM_' + str(j) + '.pdf'
                measure1.plot('save', fname)

                # f=open('2011.052.10.57.52'+'_result.txt','a')
                # f.write('transm'+'\t'+str(f1[j])+'\t'+str(f2[j])+'\t'+str(phi)+'\t'+str(dev)+'\t'+str(t)+'\t'+str(dt)+'\n')
                # f.close()
            except:
                continue

            try:
                index, ti = bestvalue(m2)
                print(index)

                phi2, dev2, t2, dt2 = m2[ti][0], m2[ti][1], m2[ti][2], m2[ti][
                    3]

                a = realdata
                if (index == -1):
                    a.set_window(x, y)

                else:
                    a.set_window(x + index, x + windowsize + index)
                # a.plot()
                measure2 = sw.CrossM(a)
                # measure2.plot()
                fname = figurefile + '_CrossM_' + str(j) + '.pdf'
                measure2.plot('save', fname)

                # f=open('2011.052.10.57.52'+'_result.txt','a')
                # f.write('CrossM'+'\t'+str(f1[j])+'\t'+str(f2[j])+'\t'+str(phi)+'\t'+str(dev)+'\t'+str(t)+'\t'+str(dt)+'\n')
                # f.write('\n')
                # f.close()
            except:
                continue
            try:
                f = open(resultfile, 'a')
                f.write('\t' + '\t\t\t' + str(f1[j]) + '\t' + str(f2[j]) +
                        '\t' + str(round(si, 2)) + '\t\t\t' + '|' +
                        str(round(phi, 3)) + '\t' + str(round(dev, 3)) + '\t' +
                        str(round(t, 3)) + '\t' + str(round(dt, 3)) + '\t' +
                        '|' + str(round(phi1, 3)) + '\t' +
                        str(round(dev1, 3)) + '\t' + str(round(t1, 3)) + '\t' +
                        str(round(dt1, 3)) + '\t' + '|' + str(round(phi2, 3)) +
                        '\t' + str(round(dev2, 3)) + '\t' + str(round(t2, 3)) +
                        '\t' + str(round(dt2, 3)) + '\t' + '\n')

                f.close()
            except:
                print("canot write")
                continue
def splitting(station,files,switch='off',phase='SKS'):
    """
    Measures SKS splitting for all streams listed in a ttext file at the provided path. These streams must be saved as SAC files.abs
    This function is the primary part of this module/package/script/thing, all the pther functions support this one.

    inpath - string contaiing the path of the textfile which contains the sac file to be read

    switch - optional kwarg to specify if you want to manually window the data or use a set of windows (Walpoles windows are availbale for use by default)
    """
    outfile = output_init(station,switch,phase)


    with open(files,'r') as reader: # NEW_read_stream.txt is a textfile containing filenames of streams which have been read and saved by Split_Read for this station. s
        for line in reader.readlines():
            line.strip('\n')
            st_id = '{}*'.format(str(line[0:-1]))

            st = read_sac(st_id)
            # Intialise some global variables which I need to pass things between fucntions (this is probably not be best way to do things but it works!)
            global pair_glob
            global quality
            global tt_glob
            if st != False and len(st) is 3: # i.e. if the stream is sufficiently populated and has been read.

                tt_UTC, t0, traveltime = model_traveltimes(st[0],phase) # Returns SKS arrival as a UTCDateTime object, event origin time and SKS arrival relative to the origin time
                tt_glob = traveltime #global variable, allows for function interect to call for a repeat meausrent
                # print(t0)
                # print('SKS_UTC ={}'.format(SKS_UTC))
                quality = [] # variable to hold Callback key entries for estimated quality of splitting measurements
                date,time = int(str(t0.year)+str(t0.julday).zfill(3)),int(str(t0.hour).zfill(2)+str(t0.minute).zfill(2)+str(t0.second).zfill(2)) #creates time and date stamps
                if switch is 'on':

                    eig_file ='{}/{}/{}/{}_{:07d}_{:06d}.eigm'.format('/Users/ja17375/Shear_Wave_Splitting/Python/Eigm_Files',phase,station,station,date,time)
                elif switch is 'off':
                    eig_file = '{}/{}/{}/{}_{}_{:07d}_{:06d}'.format('/Users/ja17375/Shear_Wave_Splitting/Python/Eigm_Files',phase,station,station,'JW_Windows',date,time)


                if os.path.isfile(eig_file):


                    split = sw.load(eig_file) #loads eigm file

                    write_splitting(outfile,station,phase,eigm=split,st=st,date=date,time=time)


                else:
                    pair = st_prep(st = st, f_min = 0.01,f_max = 0.5)
                    # print(st[0].stats.starttime)
                    pair_glob = pair

                    if switch == 'on': # If manual windowing is on

                        if phase == 'SKKS' and st[0].stats.sac.gcarc < 105.0:
                            split = None
                        else:
                            print('Test Passed. Phase ={}, GCARC = {}'.format(phase,st[0].stats.sac.gcarc))
                            split, wbeg, wend,fig = split_measure(pair,traveltime)
                            split.quality = quality
                            plt.savefig('{}{}_{}_{:07d}_{:06d}'.format('/Users/ja17375/Shear_Wave_Splitting/Python/Figures/Eigm_Surface/',station,phase,date,time))
                            plt.close()
                            write_splitting(outfile,station,phase,eigm=split,st=st,date=date,time=time)
                            split.save(eig_file)


                    elif switch == 'off': #Manual windowing is off. For now this will just mean Jacks windows will be used. Eventually add automation or support for entering windows.

                        (wl_fast,wl_dfast,wl_tlag,wl_dtlag,wl_wbeg,wl_wend) = split_match(date,time,station)
                        pair.set_window(wl_wbeg,wl_wend) # Sets window to that of Jacks
                        wbeg,wend = pair.wbeg(), pair.wend()
                        split = sw.EigenM(pair,lags=(4,) ) # Measures splitting

                        fig = plt.figure(figsize=(12,6))
                        eigen_plot(split,fig)

                        plt.savefig('{}/{}_{}_{}_{:07d}_{:06d}'.format('/Users/ja17375/Shear_Wave_Splitting/Python/Figures/Eigm_Surface',station,phase,'JW_Windows',date,time))

                        plt.close()
                        split.quality = 'w'


                        write_splitting(outfile,station,phase,eigm=split,st=st,date=date,time=time) #Call write_splitting where there are measuremtns to output
                        # save_sac(st,quality[0],date,time,wbeg,wend,switch)
                        split.save(eig_file) # Saves splitting measurements
            else:
                write_splitting(outfile,phase,station)

    plt.close('all')
    outfile.close()
Esempio n. 7
0
    def SKScalc(self,
                dataSKSfileloc,
                trace_loc_ENZ=None,
                trace_loc_RTZ=None,
                trigger_loc=None,
                method='None'):

        # self.logger.info("Cut the traces around the SKS arrival")
        sksfiles = glob.glob(
            dataSKSfileloc +
            f"*-{str(inpSKSdict['filenames']['data_sks_suffix'])}.h5")
        # self.logger.info(sksfiles)

        # all_measurements = open(self.plot_measure_loc+"../"+"sks_measurements_all.txt",'w')
        # all_measurements.write("NET STA LON LAT AvgFastDir AvgLagTime NumMeasurements NumNull\n")
        all_meas_start, all_meas_close = True, False

        meas_file = self.plot_measure_loc + 'done_measurements.txt'
        f, finished_file, finished_events = measure_status(
            meas_file)  #track the measurements

        for i, sksfile in enumerate(sksfiles):
            count = 0
            data = read_rf(sksfile, 'H5')
            self.logger.info(f"SKS measurements for {sksfile}\n")
            net_name = os.path.basename(sksfile).split("-")[0]
            stn_name = os.path.basename(sksfile).split("-")[1]

            stn_meas_close = False
            # if stn_meas_start:
            sks_measurements_stn = self.plot_measure_loc + f"{net_name}_{stn_name}_{str(inpSKSdict['filenames']['sks_meas_indiv'])}"
            null_measurements_stn = self.plot_measure_loc + f"{net_name}_{stn_name}_null_measurements.txt"
            if not os.path.exists(sks_measurements_stn):
                sks_meas_file = sks_measure_file_start(
                    sks_measurements_stn, data[0].stats.station_longitude,
                    data[0].stats.station_latitude,
                    "EventTime EvLong EvLat Evdp Baz FastDirection(degs) deltaFastDir(degs) LagTime(s) deltaLagTime(s) SI\n"
                )

                sks_meas_file_null = sks_measure_file_start(
                    null_measurements_stn, data[0].stats.station_longitude,
                    data[0].stats.station_latitude,
                    "EventTime EvLong EvLat Evdp Baz\n")
                stn_meas_close = True

            plt_id = f"{net_name}-{stn_name}"
            measure_list, squashfast_list, squashlag_list = [], [], []
            fast_dir_all, lag_time_all = [], []
            num_measurements, num_null = 0, 0
            for stream3c in IterMultipleComponents(data, 'onset', 3):
                count += 1
                ## check if the length of all three traces are equal
                tr_lens = []
                for tr in stream3c:
                    lentr = tr.stats.npts
                    tr_lens.append(lentr)
                    lengt = tr.stats.sampling_rate * 100
                    if lentr != lengt:
                        continue
                if not len(set(tr_lens)) == 1:
                    continue

                if sksfile in finished_file and str(
                        stream3c[0].stats.event_time) in finished_events:
                    continue
                else:
                    if all_meas_start:
                        all_measurements = open(
                            self.plot_measure_loc + "../" +
                            "sks_measurements_all.txt", 'w')
                        all_measurements.write(
                            "NET STA LON LAT AvgFastDir AvgLagTime NumMeasurements NumNull\n"
                        )
                        all_meas_start = False
                        all_meas_close = True
                    f.write("{},{}\n".format(sksfile,
                                             stream3c[0].stats.event_time))

                ## check if the length of all three traces are equal
                len_tr_list = list()
                for tr in stream3c:
                    len_tr_list.append(len(tr))
                if len(set(len_tr_list)) != 1:
                    self.logger.warning(
                        f"{count}/{int(len(data)/3)}[{i}/{len(sksfiles)}] Bad trace: {stream3c[0].stats.event_time}"
                    )
                    continue

                ## filter the trace
                st = stream3c.filter(
                    'bandpass',
                    freqmin=float(
                        inpSKSdict['sks_filter_settings']['minfreq']),
                    freqmax=float(
                        inpSKSdict['sks_filter_settings']['maxfreq']))
                st.detrend('linear')
                # st.taper(max_percentage=0.05, type="hann")
                sps = st[0].stats.sampling_rate
                t = st[0].stats.starttime
                ## trim the trace

                trace1 = st.trim(
                    t + int(inpSKSdict['sks_picking']['trimstart']),
                    t + int(inpSKSdict['sks_picking']['trimend']))

                ## plot the ENZ
                if trace_loc_ENZ:
                    plot_trace(trace1, trace_loc_ENZ)

                ## Rotate to RTZ
                ## trace2[0]->BHT; trace2[1]->BHR; trace2[2]->BHZ;
                trace1.rotate('NE->RT')

                evyear = trace1[0].stats.event_time.year
                evmonth = trace1[0].stats.event_time.month
                evday = trace1[0].stats.event_time.day
                evhour = trace1[0].stats.event_time.hour
                evminute = trace1[0].stats.event_time.minute

                # ## plot all three traces RTZ
                if trace_loc_RTZ:
                    plot_trace(trace1, trace_loc_RTZ)

                ######################
                #  Different picker methods
                ######################
                ### operating on transverse component
                if method == "recursive_sta_lta":
                    # self.logger.info(f"Method is {method}")
                    cft = recursive_sta_lta(trace1[1].data, int(1 * sps),
                                            int(5 * sps))
                    threshold = (
                        float(inpSKSdict['sks_picking']['picking_algo']
                              ['sks_picking_algo_thr0']),
                        float(inpSKSdict['sks_picking']['picking_algo']
                              ['sks_picking_algo_thr1']))  #(2.5,0.65)
                    on_off = np.array(
                        trigger_onset(cft, threshold[0], threshold[1]))

                    if trigger_loc and on_off.shape[0] == 1:
                        outfile = trigger_loc + f'{plt_id}-{trace1[0].stats.event_time}-trigger.png'
                        plot_trigger(trace1[1],
                                     cft,
                                     on_off,
                                     threshold[0],
                                     threshold[1],
                                     outfile=outfile)

                elif method == "classic_sta_lta":
                    cft = classic_sta_lta(trace1[1].data, int(5 * sps),
                                          int(10 * sps))
                    threshold = (
                        float(inpSKSdict['sks_picking']['picking_algo']
                              ['sks_picking_algo_thr0']),
                        float(inpSKSdict['sks_picking']['picking_algo']
                              ['sks_picking_algo_thr1']))  #(1.5, 0.5)
                    on_off = np.array(
                        trigger_onset(cft, threshold[0], threshold[1]))
                elif method == "z_detect":
                    cft = z_detect(trace1[1].data, int(10 * sps))
                    threshold = (
                        float(inpSKSdict['sks_picking']['picking_algo']
                              ['sks_picking_algo_thr0']),
                        float(inpSKSdict['sks_picking']['picking_algo']
                              ['sks_picking_algo_thr1']))  #(-0.4, -0.3)
                    on_off = np.array(
                        trigger_onset(cft, threshold[0], threshold[1]))
                elif method == "carl_sta_trig":
                    cft = carl_sta_trig(trace1[1].data, int(5 * sps),
                                        int(10 * sps), 0.8, 0.8)
                    threshold = (
                        float(inpSKSdict['sks_picking']['picking_algo']
                              ['sks_picking_algo_thr0']),
                        float(inpSKSdict['sks_picking']['picking_algo']
                              ['sks_picking_algo_thr1']))  #(20.0, -20.0)
                    on_off = np.array(
                        trigger_onset(cft, threshold[0], threshold[1]))
                elif method == "delayed_sta_lta":
                    cft = delayed_sta_lta(trace1[1].data, int(5 * sps),
                                          int(10 * sps))
                    threshold = (
                        float(inpSKSdict['sks_picking']['picking_algo']
                              ['sks_picking_algo_thr0']),
                        float(inpSKSdict['sks_picking']['picking_algo']
                              ['sks_picking_algo_thr1']))  #(5, 10)
                    on_off = np.array(
                        trigger_onset(cft, threshold[0], threshold[1]))
                else:
                    self.logger.info("No valid method specified")
                    pass

                if on_off.shape[0] == 1:
                    trace1.rotate('RT->NE')
                    trace2 = trace1
                    realdata = sw.Pair(
                        trace2[1].data, trace2[0].data, delta=1 / sps
                    )  #creates Pair from two traces, delta: sample interval
                    try:
                        measure = sw.EigenM(
                            realdata,
                            lags=(float(inpSKSdict['sks_measurement_contrains']
                                        ['lag_settings']['minlag']),
                                  float(inpSKSdict['sks_measurement_contrains']
                                        ['lag_settings']['maxlag']), 40))

                    except Exception as e:
                        self.logger.error(e)
                        continue
                    d = measure.srcpoldata_corr().chop()
                    snr = sw.core.snrRH(
                        d.x, d.y
                    )  #Restivo and Helffrich (1999) signal to noise ratio
                    # print(d.x,d.y)
                    # print("splitting intensity",splitting_intensity(d))

                    ##sum the error surfaces along each of the axes, to "squash" the surface into two profiles, one for fast and one for lag
                    ## the result is best defined for the lam1/lam2 surface than the lam1 surface, or the lam2 surface
                    #- Jack Walpole
                    squashfast = np.sum(measure.lam1 / measure.lam2, axis=0)
                    squashlag = np.sum(measure.lam1 / measure.lam2, axis=1)

                    mean_max_lam12_fast = np.max(squashfast) / np.mean(
                        squashfast)
                    mean_max_lam12_lag = np.max(squashlag) / np.mean(squashlag)

                    ## Null test
                    ## The measurements that fail the constrain of the maximum allowed error in delay time and the maximum delay time can be associated with null measurements because this happens due little energy on the transverse component to constrain delay time (Evans et al., 2006).

                    diff_mult = auto_null_measure(measure,
                                                  squashfast,
                                                  squashlag,
                                                  plot_null=False)
                    null_thresh = 0.05  #below this value, the measurement is classified as null
                    if diff_mult < null_thresh:
                        if stn_meas_close:
                            sks_meas_file_null.write(
                                "{} {:8.4f} {:8.4f} {:4.1f}\n".format(
                                    trace1[0].stats.event_time,
                                    trace1[0].stats.event_longitude,
                                    trace1[0].stats.event_latitude,
                                    trace1[0].stats.event_depth,
                                    trace1[0].stats.back_azimuth))
                        self.logger.info("{}/{} Null measurement {}".format(
                            count, int(len(data) / 3),
                            trace1[0].stats.event_time))
                        num_null += 1
                    else:
                        if str(inpSKSdict['sks_measurement_contrains']
                               ['sel_param']) == "snr":
                            filtres = filter_pick_snr(measure, inpSKSdict, snr)
                        elif str(inpSKSdict['sks_measurement_contrains']
                                 ['sel_param']) == "lam12":
                            filtres = filter_pick_lam12(
                                measure, inpSKSdict, mean_max_lam12_fast,
                                mean_max_lam12_lag)

                        ##
                        if filtres:
                            num_measurements += 1
                            if stn_meas_close:
                                sks_meas_file.write(
                                    "{} {:8.4f} {:8.4f} {:4.1f} {:6.1f} {:6.1f} {:.1f} {:.1f} {:.2f} {:.2f}\n"
                                    .format(trace1[0].stats.event_time,
                                            trace1[0].stats.event_longitude,
                                            trace1[0].stats.event_latitude,
                                            trace1[0].stats.event_depth,
                                            trace1[0].stats.back_azimuth,
                                            measure.fast, measure.dfast,
                                            measure.lag, measure.dlag,
                                            splitting_intensity(d)))

                            if self.plot_measure_loc and bool(
                                    inpSKSdict['sks_measurement_plot']
                                ['measurement_snapshot']):
                                plot_SKS_measure(measure)
                                plt.savefig(
                                    self.plot_measure_loc +
                                    f'{plt_id}-{evyear}_{evmonth}_{evday}_{evhour}_{evminute}.png'
                                )
                                plt.close('all')
                                self.logger.info(
                                    "{}/{} [{}/{}] Good measurement: {}; fast = {:.2f}+-{:.2f}, lag = {:.2f}+-{:.2f}"
                                    .format(count, int(len(data) / 3), i,
                                            len(sksfiles),
                                            trace1[0].stats.event_time,
                                            measure.fast, measure.dfast,
                                            measure.lag, measure.dlag))

                            if int(inpSKSdict['error_plot_toggles']
                                   ['error_plot_indiv']):
                                errorplot(
                                    measure,
                                    squashfast,
                                    squashlag,
                                    figname=self.plot_measure_loc +
                                    f'errorplot_{plt_id}-{evyear}_{evmonth}_{evday}_{evhour}_{evminute}.png'
                                )
                                polar_error_surface(
                                    measure,
                                    figname=self.plot_measure_loc +
                                    f'errorplot_polar_{plt_id}-{evyear}_{evmonth}_{evday}_{evhour}_{evminute}.png'
                                )

                            if int(inpSKSdict['error_plot_toggles']
                                   ['error_plot_all']):
                                measure_list.append(measure)
                                squashfast_list.append(squashfast)
                                squashlag_list.append(squashlag)

                            fast_dir = measure.degs[0, np.argmax(squashfast)]

                            #to be sure the measurements are on the same half of projection
                            if fast_dir < -45 and fast_dir > -91:
                                fast_dir = fast_dir + 180
                            else:
                                fast_dir = fast_dir

                            fast_dir_all.append(fast_dir)
                            lag_time_all.append(
                                measure.lags[np.argmax(squashlag), 0])
                        else:
                            self.logger.info(
                                "{}/{} [{}/{}] Bad measurement: {}! dfast = {:.1f}, dlag = {:.1f}, snr: {:.1f}"
                                .format(
                                    count, int(len(data) / 3), i,
                                    len(sksfiles),
                                    stream3c[0].stats.event_time,
                                    measure.dfast, measure.dlag,
                                    snr))  #; Consider changing the trim window
                else:
                    self.logger.info(
                        f"{count}/{int(len(data)/3)} [{i}/{len(sksfiles)}] Bad phase pick: {stream3c[0].stats.event_time}"
                    )
            if stn_meas_close:
                sks_meas_file.close()
                sks_meas_file_null.close()

            if bool(inpSKSdict['error_plot_toggles']
                    ['error_plot_all']) and count > 0:
                errorplot_all(measure_list,
                              squashfast_list,
                              squashlag_list,
                              np.array(fast_dir_all),
                              np.array(lag_time_all),
                              figname=self.plot_measure_loc +
                              f'errorplot_{plt_id}.png')

            ## Splitting intensity vs backazimuth
            if bool(inpSKSdict['sks_measurement_plot']['plot_SI']):
                sks_meas_file = self.plot_measure_loc + f"{net_name}_{stn_name}_{str(inpSKSdict['filenames']['sks_meas_indiv'])}"
                outfig = self.plot_measure_loc + f"{net_name}_{stn_name}_BAZ_SI.png"
                if os.path.exists(
                        sks_meas_file) and not os.path.exists(outfig):
                    plot_baz_si_map(sks_meas_file=sks_meas_file, outfig=outfig)

            if all_meas_close:
                mean_fast_dir_all = mean_angle(fast_dir_all) if len(
                    fast_dir_all) else 0

                all_measurements.write(
                    "{} {} {:.4f} {:.4f} {:.2f} {:.1f} {} {}\n".format(
                        net_name, stn_name, data[0].stats.station_longitude,
                        data[0].stats.station_latitude, mean_fast_dir_all,
                        np.mean(lag_time_all), num_measurements, num_null))

        f.close()
        if all_meas_close:
            all_measurements.close()