def thetaEuler(nx, ntmax, theta): '''theta == 0 means forward Euler method, theta == 1 means backward Euler method. 0 <= theta <= 1. ''' dx = 1.0/nx dt = 0.5*dx**2 x = [] for i in range(nx + 1): x.append(i*dx) u = np.zeros(nx + 1) dimension = nx - 1 dimension, rowA, colA, dataA = spmv.sparseMatrix(dimension, theta*dt/dx**2) dimension, rowB, colB, dataB = spmv.sparseMatrix(dimension, -(1-theta)*dt/dx**2) f = np.zeros(len(x)) for i in range(len(x)): f[i] = F(x[i]) tol = 0.0001 iterMax = 100 step = 0 while(True): V = [] for element in u[1:-1]: V.append(element) u[1:-1] = spmvcg.conjugateGradient(dimension, rowA, colA, dataA, spmv.product(dimension, rowB, colB, dataB, u[1:-1]) + dt*f[1:-1], tol, iterMax) step = step + 1 residual = 0 for i in range(len(V)): residual = residual + (V[i] - u[1:-1][i])**2 #print step #print residual if (step > ntmax): break if (np.sqrt(residual) < 0.0000001): break return x, u
def main(): import sys if (len(sys.argv) != 3): print "Matrix dimension = argv[1], l = argv[2]. " return -1 pr = cProfile.Profile() pr.enable() dimension = int(sys.argv[1]) l = float(sys.argv[2]) dimension, row, col, data = spmv.sparseMatrix(dimension, l) b = np.zeros(dimension) for i in range(dimension): b[i] = i + 1 tol = 0.0001 iterMax = 100 x = conjugateGradient(dimension, row, col, data, b, tol, iterMax) if (False): print "Vector b: " print b print "Solution of Ax = b: " print x print "Ax = " print spmv.product(dimension, row, col, data, x) pr.disable() pr.dump_stats("profile") pr.print_stats() return 0