def solve(self):
     for i in range(total_ite):
         roopcount = roopcount + 1
         X, y, prx, dux, hize = coefficient_learning(
             d, X, y, S, N * N, M, rhox, lamd, d_size, coef_ite)
         # logging
         prx_log.append(prx[coef_ite - 1])
         dux_log.append(dux[coef_ite - 1])
         hizero.append(hize)
         # fft
         xf = X_to_xf(X, N * N, M)
         d, dcon, prd, dud = dictinary_learning(d, dcon, xf, S, N * N, M,
                                                rhod, d_size, dict_ite)
         # logging
         prd_log.append(prd[0])
         dud_log.append(dud[0])
         # prox of support function
         d = pr_d(d, N * N, M, d_size)
         # X = X.transpose(1, 2, 0)
         # crop
         d = d[:, :d_size, :d_size]
         if i == total_ite - 1:
             d = d.transpose(1, 2, 0)
             plot.imview(util.tiledict(d), fgsz=(7, 7))
             d = d.transpose(2, 0, 1)
         mindx_s = dx_s(d, xf, S, N * N, M, K,
                        d_size) + lamd * l1x(X, N * N, M)
         goal.append(mindx_s)
         D = D_to_d(d, N * N, d_size)
         image = reconstruct(xf[0], D, N * N, M)
         print("iterate number: ", roopcount)
         imgr = sl1 + image
         # imgr = image
         print("Reconstruction PSNR: %.2fdB\n" % sm.psnr(ori[0], imgr))
Esempio n. 2
0
def testdict(cri, Dr0, Dr, Slr, Shr, dir,
    lambdas = [
        '1e-2',
        '2e-2',
        '5e-2',
        '1e-1',
        '2e-1',
        '5e-1',
    ]):
    S = (Slr + Shr).squeeze()
    ret = [[] for k in range(cri.K)]
    for s in lambdas:
        print('==========================================')
        print('test dictionary (lambda = %s)' % s)
        print('==========================================')
        lmbda = float(s)
        Xr = calcXr(cri, Dr, Shr, lmbda=lmbda)
        X = Xr.squeeze()
        S_ = (reconstruct(cri, Dr, Xr) + Slr).squeeze()
        for k in range(cri.K):
            d = {
                'lambda': lmbda,
                'psnr': sm.psnr(S.T[k].T, S_.T[k].T),
                'ssim': compare_ssim(S.T[k].T, S_.T[k].T),
                'l0norm': strict_l0norm(np.rollaxis(X, 2)[k]),
            }
            pprint.pprint(d)
            ret[k].append(d)

        save_result(Dr0.squeeze(), Dr.squeeze(), X, (Slr + Shr).squeeze(), S_, dir + '/result_lambda=%s.png' % s)
    return ret
Esempio n. 3
0
 def test_03(self):
     N = 16
     x = np.random.randn(N)
     x -= x.min()
     x /= x.max()
     y = x + 1
     assert np.abs(metric.psnr(x, y)) < 1e-8
Esempio n. 4
0
def run_cbpdn(D, sl, sh, lmbda, test_blob=None, opt=None):
    """Run ConvBPDN solver and compute statistics."""
    opt = cbpdn.ConvBPDN.Options(opt)
    if test_blob is None:
        test_blob = sl + sh
    solver = cbpdn.ConvBPDN(D, sh, lmbda, opt=opt)
    solver.solve()
    fnc = solver.getitstat().ObjFun[-1]
    shr = solver.reconstruct().reshape(sl.shape)
    imgr = sl + shr
    psnr = 0.
    for idx in range(sh.shape[-1]):
        psnr += sm.psnr(test_blob[..., idx], imgr[..., idx], rng=1.)
    psnr /= test_blob.shape[-1]
    if _cfg.VERBOSE:
        print('.', end='', flush=True)
    return fnc, psnr
Esempio n. 5
0
def save_result(D0, D, X, S, S_reconstructed, filename):
    titles = [[], []]
    r1 = []
    for k in range(S.shape[-1]):
        r1.append(S.T[k].T)
        titles[0].append('')
    r1.append(util.tiledict(D0))
    titles[0].append('')
    r2 = []
    for k in range(S.shape[-1]):
        r2.append(S_reconstructed.T[k].T)
        psnr = sm.psnr(S.T[k].T, S_reconstructed.T[k].T)
        ssim = compare_ssim(S.T[k].T, S_reconstructed.T[k].T)
        l0 = strict_l0norm(np.rollaxis(X, 2)[k])
        titles[1].append("PSNR: %.3fdb\nSSIM: %.4f\nl0norm: %d" % (psnr, ssim, l0))
    r2.append(util.tiledict(D))
    titles[1].append('')
    saveimg2D(np.array([r1, r2]), filename, np.array(titles))
Esempio n. 6
0
def run_cbpdn_gpu(D, sl, sh, lmbda, test_blob=None, opt=None):
    """Run GPU version of CBPDN.  Only supports grayscale images."""
    assert _cfg.TEST.DATASET.GRAY, 'Only grayscale images are supported'
    assert cucbpdn is not None, 'GPU CBPDN is not supported'
    opt = cbpdn.ConvBPDN.Options(opt)
    if test_blob is None:
        test_blob = sl + sh
    fnc, psnr = 0., 0.
    for idx in range(test_blob.shape[-1]):
        X = cucbpdn.cbpdn(D, sh[..., idx].squeeze(), lmbda, opt=opt)
        shr = np.sum(spl.fftconv(D, X), axis=2)
        dfd = linalg.norm(shr.ravel() - sh[..., idx].ravel())
        rl1 = linalg.norm(X.ravel(), 1)
        obj = dfd + lmbda * rl1
        fnc += obj
        imgr = sl[..., idx] + shr
        psnr += sm.psnr(imgr, test_blob[..., idx].squeeze(), rng=1.)
    psnr /= test_blob.shape[-1]
    if _cfg.VERBOSE:
        print('.', end='', flush=True)
    return fnc, psnr
Esempio n. 7
0
        print('Running on GPU %d (%s)\n' % (id, info[id].name))

b = pdcsc.ConvProdDictBPDN(np2cp(D), np2cp(B), np2cp(shc), lmbda, opt, dimK=0)
X = cp2np(b.solve())
print("ConvProdDictBPDN solve time: %.2fs" % b.timer.elapsed('solve'))


"""
Compute partial and full reconstructions from sparse representation $X$ with respect to convolutional dictionary $D$ and standard dictionary $B$. The partial reconstructions are $DX$ and $XB$, and the full reconstruction is $DXB$.
"""

DX = fft.fftconv(D[..., np.newaxis, np.newaxis, :], X, axes=(0, 1))
XB = linalg.dot(B, X, axis=2)
shr = cp2np(b.reconstruct().squeeze())
imgr = slc + shr
print("Reconstruction PSNR: %.2fdB\n" % metric.psnr(img, imgr))


"""
Display original and reconstructed images.
"""

gamma = lambda x, g: np.sign(x) * (np.abs(x)**g)

fig, ax = plot.subplots(nrows=2, ncols=2, figsize=(14, 14))
plot.imview(img, title='Original image', ax=ax[0, 0], fig=fig)
plot.imview(slc, title='Lowpass component', ax=ax[0, 1], fig=fig)
plot.imview(imgr, title='Reconstructed image', ax=ax[1, 0], fig=fig)
plot.imview(gamma(shr, 0.6), title='Reconstructed highpass component',
            ax=ax[1, 1], fig=fig)
fig.show()
Esempio n. 8
0

"""
The denoised estimate of the image is just the reconstruction from all coefficient maps.
"""

imgdp = cp2np(b.reconstruct().squeeze())
imgd = crop(imgdp)


"""
Display solve time and denoising performance.
"""

print("ConvProdDictL1L1Grd solve time: %5.2f s" % b.timer.elapsed('solve'))
print("Noisy image PSNR:    %5.2f dB" % sm.psnr(img, imgn))
print("Denoised image PSNR: %5.2f dB" % sm.psnr(img, imgd))


"""
Display the reference, noisy, and denoised images.
"""

fig, ax = plot.subplots(nrows=1, ncols=3, figsize=(21, 7))
fig.suptitle('ConvProdDictL1L1GrdJoint Results (false colour, '
             'bands 10, 20, 30)')
plot.imview(img[..., 10:40:10], title='Reference', ax=ax[0], fig=fig)
plot.imview(imgn[..., 10:40:10], title='Noisy', ax=ax[1], fig=fig)
plot.imview(imgd[..., 10:40:10], title='Denoised', ax=ax[2], fig=fig)
fig.show()
Esempio n. 9
0
    ams = cbpdn.AddMaskSim(cbpdn.ConvBPDNGradReg,
                           Di,
                           imgwp,
                           mskp,
                           lmbda,
                           mu,
                           opt=opt)
    X = ams.solve().squeeze()
    t = ams.timer.elapsed('solve')
    imgr = crop(ams.reconstruct().squeeze())
"""
Display solve time and reconstruction performance.
"""

print("AddMaskSim wrapped ConvBPDN solve time: %.2fs" % t)
print("Corrupted image PSNR: %5.2f dB" % metric.psnr(img, imgw))
print("Recovered image PSNR: %5.2f dB" % metric.psnr(img, imgr))
"""
Display reference, test, and reconstructed image
"""

fig = plot.figure(figsize=(21, 7))
plot.subplot(1, 3, 1)
plot.imview(img, title='Reference image', fig=fig)
plot.subplot(1, 3, 2)
plot.imview(imgw, title='Corrupted image', fig=fig)
plot.subplot(1, 3, 3)
plot.imview(imgr, title='Reconstructed image', fig=fig)
fig.show()
"""
Display lowpass component and sparse representation
Esempio n. 10
0
 def test_04(self):
     N = 16
     x = np.random.randn(N)
     y = x + 1
     assert np.abs(metric.psnr(x, y, rng=1.0)) < 1e-8
Esempio n. 11
0
"""
Initialise and run CSC solver.
"""

b = cbpdn.ConvBPDNProjL1(D, sh, gamma, opt)
X = b.solve()
print("ConvBPDNProjL1 solve time: %.2fs" % b.timer.elapsed('solve'))


"""
Reconstruct image from sparse representation.
"""

shr = b.reconstruct().squeeze()
imgr = sl + shr
print("Reconstruction PSNR: %.2fdB\n" % sm.psnr(img, imgr))


"""
Display low pass component and sum of absolute values of coefficient maps of highpass component.
"""

fig = plot.figure(figsize=(14, 7))
plot.subplot(1, 2, 1)
plot.imview(sl, title='Lowpass component', fig=fig)
plot.subplot(1, 2, 2)
plot.imview(np.sum(abs(X), axis=b.cri.axisM).squeeze(), cmap=plot.cm.Blues,
            title='Sparse representation', fig=fig)
fig.show()

Esempio n. 12
0
    'MaxMainIter': 12,
    'rho': 1.8e-1,
    'Y0': imgb
})
"""
Create solver object and solve, returning the the demosaiced image ``imgp``.
"""

b = PPP(img.shape, f, proxf, proxg, opt=opt)
imgp = b.solve()
"""
Display solve time and demosaicing performance.
"""

print("PPP ADMM solve time:        %5.2f s" % b.timer.elapsed('solve'))
print("Baseline demosaicing PSNR:  %5.2f dB" % metric.psnr(img, imgb))
print("PPP demosaicing PSNR:       %5.2f dB" % metric.psnr(img, imgp))
"""
Display reference and demosaiced images.
"""

fig, ax = plot.subplots(nrows=1,
                        ncols=3,
                        sharex=True,
                        sharey=True,
                        figsize=(21, 7))
plot.imview(img, title='Reference', fig=fig, ax=ax[0])
plot.imview(imgb,
            title='Baseline demoisac: %.2f (dB)' % metric.psnr(img, imgb),
            fig=fig,
            ax=ax[1])
Esempio n. 13
0
imgd = crop(imgdp)


"""
Keep a copy of the low-frequency component estimate from this solution for use in the next approach.
"""

imglp = X[..., 0, 3:6].squeeze()


"""
Display solve time and denoising performance.
"""

print("ConvBPDNGradReg solve time: %5.2f s" % b.timer.elapsed('solve'))
print("Noisy image PSNR:    %5.2f dB" % sm.psnr(img, imgn))
print("Denoised image PSNR: %5.2f dB" % sm.psnr(img, imgd))


"""
Display the reference, noisy, and denoised images.
"""

fig, ax = plot.subplots(nrows=1, ncols=3, figsize=(21, 7))
fig.suptitle('Method 1 Results')
plot.imview(img, ax=ax[0], title='Reference', fig=fig)
plot.imview(imgn, ax=ax[1], title='Noisy', fig=fig)
plot.imview(imgd, ax=ax[2], title='CSC Result', fig=fig)
fig.show()

Esempio n. 14
0
def psnr(*args, **kwargs):
    warnings.warn("sporco.linalg.psnr is deprecated: use sporco.metric.psnr",
                  PendingDeprecationWarning)
    return sm.psnr(*args, **kwargs)
Esempio n. 15
0

"""
Reconstruct from representation.
"""

imgr = crop(sl + ams.reconstruct().squeeze())


"""
Display solve time and reconstruction performance.
"""

print("AddMaskSim wrapped ConvBPDN solve time: %.2fs" %
      ams.timer.elapsed('solve'))
print("Corrupted image PSNR: %5.2f dB" % metric.psnr(img, imgw))
print("Recovered image PSNR: %5.2f dB" % metric.psnr(img, imgr))


"""
Display reference, test, and reconstructed image
"""

fig = plot.figure(figsize=(21, 7))
plot.subplot(1, 3, 1)
plot.imview(img, title='Reference image', fig=fig)
plot.subplot(1, 3, 2)
plot.imview(imgw, title='Corrupted image', fig=fig)
plot.subplot(1, 3, 3)
plot.imview(imgr, title='Reconstructed image', fig=fig)
fig.show()
Esempio n. 16
0
    X = cp2np(X)

print("ConvBPDN solve time: %.2fs" % b.timer.elapsed('solve'))


"""
Reconstruct image from sparse representation.
"""

recon = b.reconstruct().squeeze()

if CUPY:
    audio = cp2np(audio)
    recon = cp2np(recon)

print("Reconstruction PSNR: %.2fdB\n" % sm.psnr(audio, recon))


"""
Show activation map across time. You may have to zoom in to see well-localized activations.
"""

wl, hl = 160, 80

# Get activation magnitude and apply padding in preparation for frame conversion
X = X.squeeze().T
# Keep track of the original length
len_orig = X.shape[-1]
# Number of frames available
num_frms = (len_orig - 1) // hl + 1
# Pad the number of activations to end on a full frame
    d = pr_d(d, N * N, M, d_size)
    # X = X.transpose(1, 2, 0)
    # crop
    d = d[:, :d_size, :d_size]
    if i == total_ite - 1:
        d = d.transpose(1, 2, 0)
        plot.imview(util.tiledict(d), fgsz=(7, 7))
        d = d.transpose(2, 0, 1)
    mindx_s = dx_s(d, xf, S, N * N, M, K, d_size) + lamd * l1x(X, N * N, M)
    goal.append(mindx_s)
    D = D_to_d(d, N * N, d_size)
    image = reconstruct(xf[0], D, N * N, M)
    print("iterate number: ", roopcount)
    imgr = sl1 + image
    # imgr = image
    print("Reconstruction PSNR: %.2fdB\n" % sm.psnr(ori[0], imgr))
# - -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -
# L2 - L1 DR
# - -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -

# for i in range(total_ite):
#     roopcount = roopcount + 1
#     X, y, prx, dux, hize = coefficient_learning_l2(
#         d, X, y, S, N * N, M, rhox, lamd, d_size, coef_ite)
#     prx_log.append(prx[coef_ite - 1])
#     dux_log.append(dux[coef_ite - 1])
#     hizero.append(hize)
#     xf = X_to_xf(X, N * N, M)
#     d, dcon, prd, dud = dictinary_learning_l2(
#         d, dcon, xf, S, N * N, M, rhod, d_size, dict_ite)
#     prd_log.append(prd[0])
Esempio n. 18
0
        return np.pad(x, ((n, n), (n, n), (0, 0)), mode='symmetric')


def crop(x, n=8):

    return x[n:-n, n:-n]


# img = util.ExampleImages().image('monarch.png', zoom=0.5, scaled=True,
#                                   gray=True, idxexp=np.s_[:, 160:672])

img = mpimg.imread('barbara1.png')
np.random.seed(12345)
imgn = img + np.random.normal(0.0, 0.1, img.shape)

print("Noisy image PSNR:    %5.2f dB" % sm.psnr(img, imgn))
npd = 16
fltlmbd = 5.0
imgnl, imgnh = util.tikhonov_filter(imgn, fltlmbd, npd)
D = util.convdicts()['G:8x8x32']
D = D[:, :, 0:14]
# D = np.random.randn(8, 8, 14)
imgnpl, imgnph = util.tikhonov_filter(pad(imgn), fltlmbd, npd)
W = spl.irfftn(
    np.conj(spl.rfftn(D, imgnph.shape,
                      (0, 1))) * spl.rfftn(imgnph[..., np.newaxis], None,
                                           (0, 1)), imgnph.shape, (0, 1))
W = W**2
W = 1.0 / (np.maximum(np.abs(W), 1e-8))

lmbda = 1.5e-2
Esempio n. 19
0
def psnr(*args, **kwargs):
    warnings.warn("sporco.linalg.psnr is deprecated: please use"\
                  " sporco.metric.psnr")
    return sm.psnr(*args, **kwargs)
Esempio n. 20
0
"""
The denoised estimate of the image is by aggregating the block reconstructions from the coefficient maps.
"""

imgd_mean = util.average_blocks(np.dot(D, X).reshape(blksz + (-1,))
                                + blockmeans, img.shape, stpsz)
imgd_median = util.combine_blocks(np.dot(D, X).reshape(blksz + (-1,))
                                  + blockmeans, img.shape, stpsz, np.median)


"""
Display solve time and denoising performance.
"""

print("BPDN solve time: %5.2f s" % b.timer.elapsed('solve'))
print("Noisy image PSNR:    %5.2f dB" % sm.psnr(img, imgn))
print("Denoised mean image PSNR: %5.2f dB" % sm.psnr(img, imgd_mean))
print("Denoised median image PSNR: %5.2f dB" % sm.psnr(img, imgd_median))


"""
Display the reference, noisy, and denoised images.
"""

fig = plot.figure(figsize=(14, 14))
plot.subplot(2, 2, 1)
plot.imview(img, title='Reference', fig=fig)
plot.subplot(2, 2, 2)
plot.imview(imgn, title='Noisy', fig=fig)
plot.subplot(2, 2, 3)
plot.imview(imgd_mean, title='SC mean Result', fig=fig)
Esempio n. 21
0
"""
The denoised estimate of the image is by aggregating the block reconstructions from the coefficient maps.
"""

imgd_mean = util.averageblocks(np.dot(D, X).reshape(blksz + (-1,))
                               + blockmeans, img.shape, stpsz)
imgd_median = util.combineblocks(np.dot(D, X).reshape(blksz + (-1,))
                               + blockmeans, img.shape, stpsz, np.median)


"""
Display solve time and denoising performance.
"""

print("BPDN solve time: %5.2f s" % b.timer.elapsed('solve'))
print("Noisy image PSNR:    %5.2f dB" % sm.psnr(img, imgn))
print("Denoised mean image PSNR: %5.2f dB" % sm.psnr(img, imgd_mean))
print("Denoised median image PSNR: %5.2f dB" % sm.psnr(img, imgd_median))


"""
Display the reference, noisy, and denoised images.
"""

fig = plot.figure(figsize=(14, 14))
plot.subplot(2, 2, 1)
plot.imview(img, title='Reference', fig=fig)
plot.subplot(2, 2, 2)
plot.imview(imgn, title='Noisy', fig=fig)
plot.subplot(2, 2, 3)
plot.imview(imgd_mean, title='SC mean Result', fig=fig)
Esempio n. 22
0

"""
Create solver object and solve, returning the the denoised image ``imgr``.
"""

b = tvl2.TVL2Deconv(np.ones((1,1)), imgn, lmbda, opt)
imgr = b.solve()


"""
Display solve time and denoising performance.
"""

print("TVL2Deconv solve time: %5.2f s" % b.timer.elapsed('solve'))
print("Noisy image PSNR:    %5.2f dB" % metric.psnr(img, imgn))
print("Denoised image PSNR: %5.2f dB" % metric.psnr(img, imgr))


"""
Display reference, corrupted, and denoised images.
"""

fig = plot.figure(figsize=(20, 5))
plot.subplot(1, 3, 1)
plot.imview(img, title='Reference', fig=fig)
plot.subplot(1, 3, 2)
plot.imview(imgn, title='Corrupted', fig=fig)
plot.subplot(1, 3, 3)
plot.imview(imgr, title=r'Restored ($\ell_2$-TV)', fig=fig)
fig.show()
Esempio n. 23
0
      (b.timer.elapsed('solve_wo_rsdl')/b_par.timer.elapsed('solve_wo_rsdl')))


"""
Reconstruct images from sparse representations.
"""

imgr = crop(sl + b.reconstruct().squeeze())
imgr_par = crop(sl + b_par.reconstruct().squeeze())


"""
Report performances of different methods of solving the same problem.
"""

print("Corrupted image PSNR: %5.2f dB" % metric.psnr(img, imgw))
print("Serial Reconstruction PSNR: %5.2f dB" % metric.psnr(img, imgr))
print("Parallel Reconstruction PSNR: %5.2f dB\n" % metric.psnr(img, imgr_par))


"""
Display reference, test, and reconstructed images
"""

fig = plot.figure(figsize=(14, 14))
plot.subplot(2, 2, 1)
plot.imview(img, fig=fig, title='Reference Image')
plot.subplot(2, 2, 2)
plot.imview(imgw, fig=fig, title=('Corrupted Image PSNR: %5.2f dB' %
            metric.psnr(img, imgw)))
plot.subplot(2, 2, 3)
Esempio n. 24
0
# Set up ConvBPDNMaskDcpl options
lmbda = 1e-3
opt = cbpdn.ConvBPDNMaskDcpl.Options({'Verbose' : True, 'MaxMainIter' : 500,
                              'HighMemSolve' : False, 'RelStopTol' : 1e-3,
                              'AuxVarObj' : False, 'RelaxParam' : 1.0,
                              'rho' : 2e-1, 'LinSolveCheck' : True,
                    'AutoRho' : {'Enabled' : False, 'StdResiduals' : True}})

# Initialise and run ConvBPDNMaskDcpl object
b = cbpdn.ConvBPDNMaskDcpl(D, S, lmbda, W, opt)
X = b.solve()
print("ConvBPDNMaskDcpl solve time: %.2fs" % b.runtime)

# Reconstruct representation
Sr = b.reconstruct().squeeze()
print("        reconstruction PSNR: %.2fdB\n" % sm.psnr(S, Sr))


# Display representation and reconstructed image
fig1 = plot.figure(1, figsize=(14,14))
plot.subplot(2,2,1)
plot.imview(np.squeeze(np.sum(abs(X), axis=b.cri.axisM)), fgrf=fig1,
            cmap=plot.cm.Blues, title='Representation')
plot.subplot(2,2,2)
plot.imview(S, fgrf=fig1, cmap=plot.cm.Blues, title='Reference image')
plot.subplot(2,2,3)
plot.imview(Sr, fgrf=fig1, cmap=plot.cm.Blues, title='Reconstructed image')
plot.subplot(2,2,4)
plot.imview(W[...,np.newaxis] * Sr, fgrf=fig1,
            title='Masked reconstructed image')
fig1.show()
Esempio n. 25
0
"""
Reconstruct images from sparse representations.
"""

shr = b.reconstruct().squeeze()
imgr = sl + shr

shr_par = b_par.reconstruct().squeeze()
imgr_par = sl + shr_par


"""
Report performances of different methods of solving the same problem.
"""

print("Serial reconstruction PSNR: %.2fdB" % sm.psnr(img, imgr))
print("Parallel reconstruction PSNR: %.2fdB\n" % sm.psnr(img, imgr_par))


"""
Display original and reconstructed images.
"""

fig = plot.figure(figsize=(21, 7))
plot.subplot(1, 3, 1)
plot.imview(img, title='Original', fig=fig)
plot.subplot(1, 3, 2)
plot.imview(imgr, title=('Serial Reconstruction PSNR:  %5.2f dB' %
            sm.psnr(img, imgr)), fig=fig)
plot.subplot(1, 3, 3)
plot.imview(imgr_par, title=('Parallel Reconstruction PSNR:  %5.2f dB' %
Esempio n. 26
0
    }
})
"""
Initialise and run CSC solver.
"""

b = cbpdn.ConvMinL1InL2Ball(D, sh, epsilon, opt)
X = b.solve()
print("ConvMinL1InL2Ball solve time: %.2fs" % b.timer.elapsed('solve'))
"""
Reconstruct image from sparse representation.
"""

shr = b.reconstruct().squeeze()
imgr = sl + shr
print("Reconstruction PSNR: %.2fdB\n" % sm.psnr(img, imgr))
"""
Display low pass component and sum of absolute values of coefficient maps of highpass component.
"""

fig = plot.figure(figsize=(14, 7))
plot.subplot(1, 2, 1)
plot.imview(sl, title='Lowpass component', fig=fig)
plot.subplot(1, 2, 2)
plot.imview(np.sum(abs(X), axis=b.cri.axisM).squeeze(),
            cmap=plot.cm.Blues,
            title='Sparse representation',
            fig=fig)
fig.show()
"""
Display original and reconstructed images.
Esempio n. 27
0
    "ParConvBPDN was %.2f times faster than ConvBPDN\n" %
    (b.timer.elapsed('solve_wo_rsdl') / b_par.timer.elapsed('solve_wo_rsdl')))
"""
Reconstruct images from sparse representations.
"""

shr = b.reconstruct().squeeze()
imgr = sl + shr

shr_par = b_par.reconstruct().squeeze()
imgr_par = sl + shr_par
"""
Report performances of different methods of solving the same problem.
"""

print("Serial reconstruction PSNR: %.2fdB" % sm.psnr(img, imgr))
print("Parallel reconstruction PSNR: %.2fdB\n" % sm.psnr(img, imgr_par))
"""
Display original and reconstructed images.
"""

fig = plot.figure(figsize=(21, 7))
plot.subplot(1, 3, 1)
plot.imview(img, title='Original', fig=fig)
plot.subplot(1, 3, 2)
plot.imview(imgr,
            title=('Serial Reconstruction PSNR:  %5.2f dB' %
                   sm.psnr(img, imgr)),
            fig=fig)
plot.subplot(1, 3, 3)
plot.imview(imgr_par,
Esempio n. 28
0
    'AutoRho': {
        'Enabled': True
    }
})
"""
Create solver object and solve, returning the the denoised image ``imgr``.
"""

b = tvl2.TVL2Denoise(imgn, lmbda, opt)
imgr = b.solve()
"""
Display solve time and denoising performance.
"""

print("TVL2Denoise solve time: %5.2f s" % b.timer.elapsed('solve'))
print("Noisy image PSNR:    %5.2f dB" % metric.psnr(img, imgn))
print("Denoised image PSNR: %5.2f dB" % metric.psnr(img, imgr))
"""
Display reference, corrupted, and denoised images.
"""

fig = plot.figure(figsize=(20, 5))
plot.subplot(1, 3, 1)
plot.imview(img, fgrf=fig, title='Reference')
plot.subplot(1, 3, 2)
plot.imview(imgn, fgrf=fig, title='Corrupted')
plot.subplot(1, 3, 3)
plot.imview(imgr, fgrf=fig, title=r'Restored ($\ell_2$-TV)')
fig.show()
"""
Get iterations statistics from solver object and plot functional value, ADMM primary and dual residuals, and automatically adjusted ADMM penalty parameter against the iteration number.
Esempio n. 29
0

"""
Create solver object and solve, returning the the demosaiced image ``imgp``.
"""

b = PPP(img.shape, f, gradf, proxg, opt=opt)
imgp = b.solve()


"""
Display solve time and demosaicing performance.
"""

print("PPP PGM solve time:        %5.2f s" % b.timer.elapsed('solve'))
print("Baseline demosaicing PSNR:  %5.2f dB" % metric.psnr(img, imgb))
print("PPP demosaicing PSNR:       %5.2f dB" % metric.psnr(img, imgp))


"""
Display reference and demosaiced images.
"""

fig, ax = plot.subplots(nrows=1, ncols=3, sharex=True, sharey=True,
                        figsize=(21, 7))
plot.imview(img, title='Reference', fig=fig, ax=ax[0])
plot.imview(imgb, title='Baseline demoisac: %.2f (dB)' %
            metric.psnr(img, imgb), fig=fig, ax=ax[1])
plot.imview(imgp, title='PPP demoisac: %.2f (dB)' %
            metric.psnr(img, imgp), fig=fig, ax=ax[2])
fig.show()