def ystep(self): r"""Minimise Augmented Lagrangian with respect to :math:`\mathbf{y}`.""" self.Y = np.asarray(sp.prox_sl1l2( self.AX + self.U, (self.lmbda / self.rho) * self.wl1, self.mu / self.rho, axis=-1), dtype=self.dtype) GenericBPDN.ystep(self)
def ystep(self): r"""Minimise Augmented Lagrangian with respect to :math:`\mathbf{y}`. """ self.Y = sp.prox_sl1l2(self.AX + self.U, (self.lmbda / self.rho) * self.wl1, (self.mu / self.rho), axis=self.cri.axisC) cbpdn.GenericConvBPDN.ystep(self)
def ystep(self): r"""Minimise Augmented Lagrangian with respect to :math:`\mathbf{y}`. """ AXU = self.AX + self.U Y0 = sp.prox_l1(self.block_sep0(AXU) - self.S, (1.0/self.rho)*self.W) Y1 = sp.prox_sl1l2(self.block_sep1(AXU), 0.0, (self.lmbda/self.rho)*self.wl21, axis=self.cri.axisC) self.Y = self.block_cat(Y0, Y1) cbpdn.ConvTwoBlockCnstrnt.ystep(self)
def test_12(self): assert np.sum(np.abs(prox.prox_sl1l2(self.V1, 1e-2, 1e-2))) > 0 assert prox.norm_nuclear(self.V1) > 0