def test_invalid_url_yields_empty_class(self):
        flexmock(Boxscore) \
            .should_receive('_retrieve_html_page') \
            .and_return(None)

        boxscore = Boxscore(BOXSCORE)

        for key, value in boxscore.__dict__.items():
            if key == '_uri':
                continue
            assert value is None
    def test_game_summary_with_no_scores_returns_none(self):
        result = Boxscore(None)._parse_summary(
            pq("""<table id="line_score">
    <tbody>
        <tr>
            <td class="center"></td>
            <td class="center"></td>
        </tr>
        <tr>
            <td class="center"></td>
            <td class="center"></td>
        </tr>
    </tbody>
</table>"""))

        assert result == {'away': [None], 'home': [None]}
Esempio n. 3
0
def predict(boxscores, year):
    for boxscore in boxscores:
        box1 = Boxscore(boxscore)
        home_games = box1.home_wins + box1.home_losses
        away_games = box1.away_wins + box1.away_losses
        if box1.home_points > box1.away_points:
            away_abbrev = box1.losing_abbr
            home_abbrev = box1.winning_abbr
        else:
            away_abbrev = box1.winning_abbr
            home_abbrev = box1.losing_abbr
        estimate = round(total_game_points_scored_over_previous_10(away_abbrev, away_games, year) + total_game_points_scored_over_previous_10(home_abbrev, home_games, year), 2)
        final_estimate = str(estimate / 2)
        print(away_abbrev + " @ " + home_abbrev)
        print("Predicted Score: " + final_estimate)
        print("Actual Score: " + str((box1.home_points + box1.away_points)))
        print()
Esempio n. 4
0
def box_scraper(seasons, schedule_df):

    tcd = tri_code_dict.create_team_conversion()
    for season in seasons:

        season_df = schedule_df.loc[schedule_df.Season == season]

        season_df['date'] = pd.to_datetime(season_df['date'])
        today = pd.to_datetime(datetime.today())
        #print(season_df.head())
        box_df = None
        for index, row in tqdm(season_df.iterrows()):
            if (row['date'].year > today.year):
                print("passing over")
                continue
            elif (row['date'].year == today.year):
                if (row['date'].month > today.month):
                    print("passing over")
                    continue
                elif (row['date'].month == today.month):
                    if (row['date'].day >= today.day):
                        print('passing over')
                        continue

            #print(row)
            box_link = row['BoxscoreIndex']
            #try:
            _df = Boxscore(box_link).dataframe

            if (tcd[row['TeamName']] == row['BoxscoreIndex'][-3:]):
                _df['home_rolling'] = row['rollingGames']
            else:
                _df['away_rolling'] = row['rollingGames']
            if box_df is not None:
                print(season)
                box_df = pd.concat([box_df, _df], axis=0, sort=False)

                #_df['rollingGames']= row['rollingGames']
            else:

                box_df = _df
                #_df['rollingGames']= row['rollingGames']
            #except: continue

        box_df.to_csv('output/{}_boxscores.csv'.format(season), index=None)
Esempio n. 5
0
def save_player_data():
    gameIds = [id.rstrip('\n') for id in open('game_ids.txt')]
    for id in gameIds:
        boxscore = Boxscore(id)

        away_roster = boxscore.away_players
        away_data = away_roster.pop().dataframe
        for player in away_roster:
            away_data = pd.concat([away_data, player.dataframe])

        home_roster = boxscore.home_players
        home_data = home_roster.pop().dataframe
        for player in home_roster:
            home_data = pd.concat([home_data, player.dataframe])

        home_data = home_data[PLAYER_STATS]
        away_data = away_data[PLAYER_STATS]
        save_game_to_file(id, away_data, home_data)
Esempio n. 6
0
def save_game_data():
    games = []

    gameIds = [id.rstrip('\n') for id in open('game_ids.txt')]
    for id in gameIds:
        print(counter)
        boxscore = Boxscore(id)

        # get the games data and select the needed stats from it
        stats = boxscore.dataframe
        stats = stats[input_data.BOXSCORE_STATS]
        stats = {k: v[0] for k, v in stats.to_dict('list').items()}

        gameData = {
            'stats': stats,
            'result': [boxscore.away_points, boxscore.home_points]
        }

        games.append(gameData)

    with open("game_data.json", 'w') as outfile:
        outfile.write(json.dumps(games))
Esempio n. 7
0
def update_box(schedule_df):

	tcd = tri_code_dict.create_team_conversion()
	box_df = None
	for index, row in tqdm(schedule_df.iterrows()):
		print(row)
		box_link = row['BoxscoreIndex']
		try:
			_df = Boxscore(box_link).dataframe
        
			if(tcd[row['TeamName']]==row['BoxscoreIndex'][-3:]):
				_df['home_rolling'] = row['rollingGames']
			else: _df['away_rolling'] = row['rollingGames']
			if box_df is not None:
				print (season)
				box_df = pd.concat([box_df,_df],axis=0)

        
			else: box_df = _df
        
		except: continue
      
	return box_df
Esempio n. 8
0
 def boxscore(self):
     """
     Returns an instance of the Boxscore class containing more detailed
     stats on the game.
     """
     return Boxscore(self._boxscore)
Esempio n. 9
0
    def setup_method(self, *args, **kwargs):
        self.results = {
            'date': '10:30 PM, October 31, 2017',
            'location': 'STAPLES Center, Los Angeles, California',
            'winner': HOME,
            'winning_name': 'Los Angeles Lakers',
            'winning_abbr': 'LAL',
            'losing_name': 'Detroit Pistons',
            'losing_abbr': 'DET',
            'pace': 97.4,
            'away_wins': 5,
            'away_losses': 3,
            'away_minutes_played': 240,
            'away_field_goals': 41,
            'away_field_goal_attempts': 94,
            'away_field_goal_percentage': .436,
            'away_two_point_field_goals': 31,
            'away_two_point_field_goal_attempts': 61,
            'away_two_point_field_goal_percentage': .508,
            'away_three_point_field_goals': 10,
            'away_three_point_field_goal_attempts': 33,
            'away_three_point_field_goal_percentage': .303,
            'away_free_throws': 1,
            'away_free_throw_attempts': 3,
            'away_free_throw_percentage': .333,
            'away_offensive_rebounds': 10,
            'away_defensive_rebounds': 34,
            'away_total_rebounds': 44,
            'away_assists': 21,
            'away_steals': 7,
            'away_blocks': 3,
            'away_turnovers': 12,
            'away_personal_fouls': 11,
            'away_points': 93,
            'away_true_shooting_percentage': .488,
            'away_effective_field_goal_percentage': .489,
            'away_three_point_attempt_rate': .351,
            'away_free_throw_attempt_rate': .032,
            'away_offensive_rebound_percentage': 19.2,
            'away_defensive_rebound_percentage': 75.6,
            'away_total_rebound_percentage': 45.4,
            'away_assist_percentage': 51.2,
            'away_steal_percentage': 7.2,
            'away_block_percentage': 4.6,
            'away_turnover_percentage': 11.2,
            'away_offensive_rating': 95.5,
            'away_defensive_rating': 116.0,
            'home_wins': 3,
            'home_losses': 4,
            'home_minutes_played': 240,
            'home_field_goals': 45,
            'home_field_goal_attempts': 91,
            'home_field_goal_percentage': .495,
            'home_two_point_field_goals': 33,
            'home_two_point_field_goal_attempts': 65,
            'home_two_point_field_goal_percentage': .508,
            'home_three_point_field_goals': 12,
            'home_three_point_field_goal_attempts': 26,
            'home_three_point_field_goal_percentage': .462,
            'home_free_throws': 11,
            'home_free_throw_attempts': 14,
            'home_free_throw_percentage': .786,
            'home_offensive_rebounds': 11,
            'home_defensive_rebounds': 42,
            'home_total_rebounds': 53,
            'home_assists': 30,
            'home_steals': 9,
            'home_blocks': 5,
            'home_turnovers': 14,
            'home_personal_fouls': 14,
            'home_points': 113,
            'home_true_shooting_percentage': .582,
            'home_effective_field_goal_percentage': .560,
            'home_three_point_attempt_rate': .286,
            'home_free_throw_attempt_rate': .154,
            'home_offensive_rebound_percentage': 24.4,
            'home_defensive_rebound_percentage': 80.8,
            'home_total_rebound_percentage': 54.6,
            'home_assist_percentage': 66.7,
            'home_steal_percentage': 9.2,
            'home_block_percentage': 8.2,
            'home_turnover_percentage': 12.6,
            'home_offensive_rating': 116.0,
            'home_defensive_rating': 95.5
        }
        flexmock(utils) \
            .should_receive('_todays_date') \
            .and_return(MockDateTime(YEAR, MONTH))

        self.boxscore = Boxscore(BOXSCORE)
Esempio n. 10
0
from sportsreference.nba.boxscore import Boxscore
import datetime
import pandas as pd

if __name__ == "__main__":
    years = ['2019']  #, '2019']
    for year in years:
        file_path = year + '_games.txt'
        opened_file = open(file_path, 'r')
        line = opened_file.readline()
        season_dfs = []
        while line:
            boxscore = Boxscore(line.rstrip())
            season_dfs.append(boxscore.dataframe)
            line = opened_file.readline()
        pd.concat(season_dfs).to_pickle(year + '.pkl')
Esempio n. 11
0
class TestNBABoxscore:
    @patch('requests.get', side_effect=mock_pyquery)
    def setup_method(self, *args, **kwargs):
        flexmock(Boxscore) \
            .should_receive('_parse_game_data') \
            .and_return(None)

        self.boxscore = Boxscore(None)

    def test_away_team_wins(self):
        fake_away_points = PropertyMock(return_value=75)
        fake_home_points = PropertyMock(return_value=70)
        type(self.boxscore)._away_points = fake_away_points
        type(self.boxscore)._home_points = fake_home_points

        assert self.boxscore.winner == AWAY

    def test_home_team_wins(self):
        fake_away_points = PropertyMock(return_value=70)
        fake_home_points = PropertyMock(return_value=75)
        type(self.boxscore)._away_points = fake_away_points
        type(self.boxscore)._home_points = fake_home_points

        assert self.boxscore.winner == HOME

    def test_winning_name_is_home(self):
        expected_name = 'Home Name'

        fake_winner = PropertyMock(return_value=HOME)
        fake_home_name = PropertyMock(return_value=MockName(expected_name))
        type(self.boxscore).winner = fake_winner
        type(self.boxscore)._home_name = fake_home_name

        assert self.boxscore.winning_name == expected_name

    def test_winning_name_is_away(self):
        expected_name = 'Away Name'

        fake_winner = PropertyMock(return_value=AWAY)
        fake_away_name = PropertyMock(return_value=MockName(expected_name))
        type(self.boxscore).winner = fake_winner
        type(self.boxscore)._away_name = fake_away_name

        assert self.boxscore.winning_name == expected_name

    def test_winning_abbr_is_home(self):
        expected_name = 'HOME'

        flexmock(utils) \
            .should_receive('_parse_abbreviation') \
            .and_return(expected_name)

        fake_winner = PropertyMock(return_value=HOME)
        fake_home_abbr = PropertyMock(return_value=MockName(expected_name))
        type(self.boxscore).winner = fake_winner
        type(self.boxscore)._home_abbr = fake_home_abbr

        assert self.boxscore.winning_abbr == expected_name

    def test_winning_abbr_is_away(self):
        expected_name = 'AWAY'

        flexmock(utils) \
            .should_receive('_parse_abbreviation') \
            .and_return(expected_name)

        fake_winner = PropertyMock(return_value=AWAY)
        fake_away_abbr = PropertyMock(return_value=MockName(expected_name))
        type(self.boxscore).winner = fake_winner
        type(self.boxscore)._away_abbr = fake_away_abbr

        assert self.boxscore.winning_abbr == expected_name

    def test_losing_name_is_home(self):
        expected_name = 'Home Name'

        fake_winner = PropertyMock(return_value=AWAY)
        fake_home_name = PropertyMock(return_value=MockName(expected_name))
        type(self.boxscore).winner = fake_winner
        type(self.boxscore)._home_name = fake_home_name

        assert self.boxscore.losing_name == expected_name

    def test_losing_name_is_away(self):
        expected_name = 'Away Name'

        fake_winner = PropertyMock(return_value=HOME)
        fake_away_name = PropertyMock(return_value=MockName(expected_name))
        type(self.boxscore).winner = fake_winner
        type(self.boxscore)._away_name = fake_away_name

        assert self.boxscore.losing_name == expected_name

    def test_losing_abbr_is_home(self):
        expected_name = 'HOME'

        flexmock(utils) \
            .should_receive('_parse_abbreviation') \
            .and_return(expected_name)

        fake_winner = PropertyMock(return_value=AWAY)
        fake_home_abbr = PropertyMock(return_value=MockName(expected_name))
        type(self.boxscore).winner = fake_winner
        type(self.boxscore)._home_abbr = fake_home_abbr

        assert self.boxscore.losing_abbr == expected_name

    def test_losing_abbr_is_away(self):
        expected_name = 'AWAY'

        flexmock(utils) \
            .should_receive('_parse_abbreviation') \
            .and_return(expected_name)

        fake_winner = PropertyMock(return_value=HOME)
        fake_away_abbr = PropertyMock(return_value=MockName(expected_name))
        type(self.boxscore).winner = fake_winner
        type(self.boxscore)._away_abbr = fake_away_abbr

        assert self.boxscore.losing_abbr == expected_name

    def test_invalid_away_record_returns_default_wins(self):
        fake_record = PropertyMock(return_value='Golden State Warriors 1')
        type(self.boxscore)._away_record = fake_record

        assert self.boxscore.away_wins == 0

    def test_invalid_away_record_returns_default_losses(self):
        fake_record = PropertyMock(return_value='Golden State Warriors 1')
        type(self.boxscore)._away_record = fake_record

        assert self.boxscore.away_losses == 0

    def test_invalid_home_record_returns_default_wins(self):
        fake_record = PropertyMock(return_value='Golden State Warriors 1')
        type(self.boxscore)._home_record = fake_record

        assert self.boxscore.home_wins == 0

    def test_invalid_home_record_returns_default_losses(self):
        fake_record = PropertyMock(return_value='Golden State Warriors 1')
        type(self.boxscore)._home_record = fake_record

        assert self.boxscore.home_losses == 0

    def test_game_summary_with_no_scores_returns_none(self):
        result = Boxscore(None)._parse_summary(pq(
            """<table id="line_score">
    <tbody>
        <tr>
            <td class="center"></td>
            <td class="center"></td>
        </tr>
        <tr>
            <td class="center"></td>
            <td class="center"></td>
        </tr>
    </tbody>
</table>"""
        ))

        assert result == {
            'away': [None],
            'home': [None]
        }

    def test_invalid_url_returns_none(self):
        result = Boxscore(None)._retrieve_html_page('')

        assert result is None

    def test_no_class_information_returns_dataframe_of_none(self):
        mock_points = PropertyMock(return_value=None)
        type(self.boxscore)._away_points = mock_points
        type(self.boxscore)._home_points = mock_points

        assert self.boxscore.dataframe is None

    def test_nba_game_info(self):
        fields = {
            'date': '7:30 PM, November 9, 2018',
            'location': 'State Farm Arena, Atlanta, Georgia'
        }

        mock_field = """7:30 PM, November 9, 2018
State Farm Arena, Atlanta, Georgia
Logos via Sports Logos.net / About logos
"""

        m = MockBoxscoreData(MockField(mock_field))

        for field, value in fields.items():
            result = self.boxscore._parse_game_date_and_location(field, m)
            assert value == result

    def test_nba_partial_game_info(self):
        fields = {
            'date': '7:30 PM, November 9, 2018',
            'location': None
        }

        mock_field = """7:30 PM, November 9, 2018
Logos via Sports Logos.net / About logos"""

        m = MockBoxscoreData(MockField(mock_field))

        for field, value in fields.items():
            result = self.boxscore._parse_game_date_and_location(field, m)
            assert value == result
Esempio n. 12
0
    def setup_method(self, *args, **kwargs):
        flexmock(Boxscore) \
            .should_receive('_parse_game_data') \
            .and_return(None)

        self.boxscore = Boxscore(None)
Esempio n. 13
0
    def test_invalid_url_returns_none(self):
        result = Boxscore(None)._retrieve_html_page('')

        assert result is None
Esempio n. 14
0
from sportsreference.nba.boxscore import Boxscore
from sportsreference.nba.schedule import Schedule
from sportsreference.nba.teams import Teams
import pandas as pd

teams = Teams()

indexes = []

for team in teams:
    games = team.schedule
    for game in games:
        indexes.append(game.boxscore_index)

scores = pd.DataFrame()

for index in indexes:
    score = Boxscore(index)
    df = score.dataframe
    scores = scores.append(df)

Esempio n. 15
0
from datetime import datetime
import sportsreference
from sportsreference.nba.boxscore import Boxscore

games_today = Boxscore(datetime.today())
print(games_today.games)  # Prints a dictionary of all matchups for today

# Pulls all games between and including January 1, 2018 and January 5, 2018
games = Boxscore(datetime(2018, 1, 1), datetime(2018, 1, 5))
# Prints a dictionary of all results from January 1, 2018 and January 5,
# 2018
print(games.games)

# relevant stats

awayDefensiveRating = Boxscore.away_defensive_rating("201710310LAL")
awayEFGP = Boxscore.away_effective_field_goal_percentage("201710310LAL")
awayFGP = Boxscore.away_field_goal_percentage("201710310LAL")
awayOffensiveRating = Boxscore.away_offensive_rating("201710310LAL")
awayORebP = Boxscore.away_offensive_rebound_percentage("201710310LAL")
awayPoints = Boxscore.away_points("201710310LAL")
awayTrueShootP = Boxscore.away_true_shooting_percentage("201710310LAL")
awayTOPercent = Boxscore.away_turnover_percentage("201710310LAL")

homeDefensiveRating = Boxscore.home_defensive_rating("201710310LAL")
homeEFGP = Boxscore.home_effective_field_goal_percentage("201710310LAL")
homeFGP = Boxscore.home_field_goal_percentage("201710310LAL")
homeOffensiveRating = Boxscore.home_offensive_rating("201710310LAL")
homeORebP = Boxscore.home_offensive_rebound_percentage("201710310LAL")
homePoints = Boxscore.home_points("201710310LAL")
homeTrueShootP = Boxscore.home_true_shooting_percentage("201710310LAL")
Esempio n. 16
0
def plot_player_game(players,
                     season,
                     stat,
                     start_date=datetime.date(1900, 1, 1),
                     end_date=datetime.date(3000, 1, 1),
                     only_month=False,
                     xlabel="Time",
                     ylabel=None,
                     scatter=True,
                     return_type="img",
                     cum=False):
    """
    Uses Sportsreference
    Plots the graphs of players according to their performance in particular games.

    :param players: Basketball-reference id of a player or list of players
    :type players: String or list of strings
    :param season: The season in which the games are played
    :type season: Either in dashed form (2018-19) or single form (2019 means the season 2018-19)
    :param stat: The statistical attribute of the player to plot
    :type stat: String
    :param start_date: The date from which the data is plotted
    :type start_date: datetime.date format
    :param end_date: The date untill which data is plotted
    :type end_date: datetime.date format
    :param only_month: Wheter or not the ticks on the x-axis only contain months. (Recommended when plotting dates extending across dates more than a couple of months)
    :type only_month: Bool
    :param xlabel: The label on the x-axis on the returned plot
    :type xlabel: String
    :param ylabel: The label on the x-axis on the returned plot
    :type ylabel: String
    :param scatter: Wheter on not to include a dot for each data point in the graph
    :type scatter: Bool
    :param return_type: Various methods by which the graph can be returned
    :type return_type: "img": png image, "fig":Matplotlib figure and axes,"show": calls the matplotlib show function (appropriate for jupyter notebooks), "html": base64 image useful for rendering in html pages
    :param cum: Wheter results are cumulative or not
    :type cum: Bool

    """
    if type(players) is not list:
        players = [players]

    player_obj = get_player_obj(players)

    fig, ax = plt.subplots()
    for player in player_obj:
        season = date_format(season)
        team = player(season).team_abbreviation
        sch = Schedule(team, date_format(season, format_as="single"))
        sch_df = sch.dataframe
        x = []
        y = []
        for index, row in sch_df.iterrows():
            if start_date <= row['datetime'].date() <= end_date:
                box = Boxscore(index)
                if row['location'] == "Home":
                    for boxplay in box.home_players:
                        if boxplay.player_id == player.player_id:
                            x.append(row['datetime'].date())
                            if cum:
                                try:
                                    prev = y[-1]
                                except:
                                    prev = 0
                                y.append(boxplay.dataframe[stat] + prev)
                            else:
                                y.append(boxplay.dataframe[stat])
                elif row['location'] == "Away":
                    for boxplay in box.away_players:
                        if boxplay.player_id == player.player_id:
                            x.append(row['datetime'].date())
                            if cum:
                                try:
                                    prev = y[-1]
                                except:
                                    prev = 0
                                y.append(boxplay.dataframe[stat] + prev)
                            else:
                                y.append(boxplay.dataframe[stat])
        ax.plot(x, y, label=player.name)
        if scatter:
            ax.scatter(x, y)
        ax.legend()
        if only_month:
            ax.xaxis.set_major_locator(MonthLocator())
            ax.xaxis.set_major_formatter(DateFormatter("%y-%m"))

    fig.autofmt_xdate()

    ax.set_xlabel(xlabel)
    if ylabel == None:
        ylabel = stat
    ax.set_ylabel(ylabel)

    return return_plot(stat, fig, ax, return_type)
Esempio n. 17
0
def plot_team_game(teams,
                   stat,
                   season,
                   start_date,
                   end_date,
                   opp=False,
                   xlabel="Time",
                   ylabel=None,
                   only_month=False,
                   scatter=True,
                   return_type="img",
                   cum=False):
    """
    Uses Sportsreference

    :param teams: Basketball-reference id for team
    :type teams: String or list of strings
    :param stat: The statistical attribute of the player to plot
    :type stat: String
    :param season: The season in which the games are played
    :type season: Either in dashed form (2018-19) or single form (2019 means the season 2018-19)
    :param start_date: The date from which the data is plotted
    :type start_date: datetime.date format
    :param end_date: The date untill which data is plotted
    :type end_date: datetime.date format
    :param opp: Whether the stat is for the opponent
    :type opp: Bool
    :param xlabel: The label on the x-axis on the returned plot
    :type xlabel: String
    :param ylabel: The label on the Y-axis on the returned plot
    :type ylabel: String
    :param scatter: Whether on not to include a dot for each data point in the graph
    :type scatter: Bool
    :param return_type: Various methods by which the graph can be returned
    :type return_type: "img": png image, "fig":Matplotlib figure and axes,"show": calls the matplotlib show function (appropriate for jupyter notebooks), "html": base64 image useful for rendering in html pages
    :param cum: Whether results are cumulative or not
    :type cum: Bool
    """
    fig, ax = plt.subplots()
    if type(teams) is not list:
        teams = [teams]
    for team in teams:
        x = []
        y = []
        sch = Schedule(team, season)
        for index, row in sch.dataframe.iterrows():
            if start_date <= row['datetime'].date() <= end_date:
                box = Boxscore(index)
                stat_prefix = ""
                stat_prefix_reversal = {"home_": "away_", "away_": "home_"}

                if row['location'] == "Home":
                    stat_prefix = "home_"
                elif row['location'] == "Away":
                    stat_prefix = "away_"

                if opp:
                    stat_prefix = stat_prefix_reversal[stat_prefix]

                x.append(row['datetime'].date())
                if cum:
                    try:
                        prev = y[-1]
                    except:
                        prev = 0

                    y.append(int(box.dataframe[stat_prefix + stat]) + prev)

                else:
                    y.append(int(box.dataframe[stat_prefix + stat]))

        ax.plot(x, y, label=team)
        if scatter:
            ax.scatter(x, y)
        ax.legend()
        if only_month:
            ax.xaxis.set_major_locator(MonthLocator())
            ax.xaxis.set_major_formatter(DateFormatter("%y-%m"))

    fig.autofmt_xdate()
    ax.set_xlabel(xlabel)
    if ylabel == None:
        if opp:
            ax.set_ylabel("opp_" + stat)
        else:
            ax.set_ylabel(stat)

    return return_plot(stat, fig, ax, return_type)