Esempio n. 1
0
    def _initialize(self, interactions):

        self._num_items = interactions.num_items

        if self._representation == 'pooling':
            self._net = PoolNet(self._num_items, self._embedding_dim, sparse=self._sparse)
        elif self._representation == 'cnn':
            self._net = CNNNet(self._num_items, self._embedding_dim, sparse=self._sparse)
        elif self._representation == 'lstm':
            self._net = LSTMNet(self._num_items, self._embedding_dim, sparse=self._sparse)
        elif self._representation == 'mixture':
            self._net = MixtureLSTMNet(self._num_items, self._embedding_dim, sparse=self._sparse)
        else:
            self._net = self._representation

        self._net = gpu(self._net, self._use_cuda)

        if self._optimizer_func is None:
            self._optimizer = optim.Adam(self._net.parameters(), weight_decay=self._l2, lr=self._learning_rate)
        else:
            self._optimizer = self._optimizer_func(self._net.parameters())

        if self._loss == 'pointwise':
            self._loss_func = pointwise_loss
        elif self._loss == 'bpr':
            self._loss_func = bpr_loss
        elif self._loss == 'hinge':
            self._loss_func = hinge_loss
        else:
            self._loss_func = adaptive_hinge_loss
Esempio n. 2
0
class ImplicitSequenceModel(object):
    """
    Model for sequential recommendations using implicit feedback.

    Parameters
    ----------

    loss: string, optional
        The loss function for approximating a softmax with negative sampling.
        One of 'pointwise', 'bpr', 'hinge', 'adaptive_hinge', corresponding
        to losses from :class:`spotlight.losses`.
    representation: string or instance of :class:`spotlight.sequence.representations`, optional
        Sequence representation to use. If string, it must be one
        of 'pooling', 'cnn', 'lstm', 'mixture'; otherwise must be one of the
        representations from :class:`spotlight.sequence.representations`
    embedding_dim: int, optional
        Number of embedding dimensions to use for representing items.
        Overridden if representation is an instance of a representation class.
    n_iter: int, optional
        Number of iterations to run.
    batch_size: int, optional
        Minibatch size.
    l2: float, optional
        L2 loss penalty.
    learning_rate: float, optional
        Initial learning rate.
    optimizer_func: function, optional
        Function that takes in module parameters as the first argument and
        returns an instance of a PyTorch optimizer. Overrides l2 and learning
        rate if supplied. If no optimizer supplied, then use ADAM by default.
    use_cuda: boolean, optional
        Run the model on a GPU.
    sparse: boolean, optional
        Use sparse gradients for embedding layers.
    random_state: instance of numpy.random.RandomState, optional
        Random state to use when fitting.
    num_negative_samples: int, optional
        Number of negative samples to generate for adaptive hinge loss.

    Notes
    -----

    During fitting, the model computes the loss for each timestep of the
    supplied sequence. For example, suppose the following sequences are
    passed to the ``fit`` function:

    .. code-block:: python

       [[1, 2, 3, 4, 5],
        [0, 0, 7, 1, 4]]


    In this case, the loss for the first example will be the mean loss
    of trying to predict ``2`` from ``[1]``, ``3`` from ``[1, 2]``,
    ``4`` from ``[1, 2, 3]`` and so on. This means that explicit padding
    of all subsequences is not necessary (although it is possible by using
    the ``step_size`` parameter of
    :func:`spotlight.interactions.Interactions.to_sequence`.
    """
    def __init__(self,
                 loss='pointwise',
                 representation='pooling',
                 embedding_dim=32,
                 n_iter=10,
                 batch_size=256,
                 l2=0.0,
                 learning_rate=1e-2,
                 optimizer_func=None,
                 use_cuda=False,
                 sparse=False,
                 random_state=None,
                 num_negative_samples=5):

        assert loss in ('pointwise', 'bpr', 'hinge', 'adaptive_hinge')

        if isinstance(representation, str):
            assert representation in ('pooling', 'cnn', 'lstm', 'mixture')

        self._loss = loss
        self._representation = representation
        self._embedding_dim = embedding_dim
        self._n_iter = n_iter
        self._learning_rate = learning_rate
        self._batch_size = batch_size
        self._l2 = l2
        self._use_cuda = use_cuda
        self._sparse = sparse
        self._optimizer_func = optimizer_func
        self._random_state = random_state or np.random.RandomState()
        self._num_negative_samples = num_negative_samples

        self._num_items = None
        self._net = None
        self._optimizer = None
        self._loss_func = None

        set_seed(self._random_state.randint(-10**8, 10**8),
                 cuda=self._use_cuda)

    def __repr__(self):

        return _repr_model(self)

    @property
    def _initialized(self):
        return self._net is not None

    def _initialize(self, interactions):

        self._num_items = interactions.num_items

        if self._representation == 'pooling':
            self._net = PoolNet(self._num_items,
                                self._embedding_dim,
                                sparse=self._sparse)
        elif self._representation == 'cnn':
            self._net = CNNNet(self._num_items,
                               self._embedding_dim,
                               sparse=self._sparse)
        elif self._representation == 'lstm':
            self._net = LSTMNet(self._num_items,
                                self._embedding_dim,
                                sparse=self._sparse)
        elif self._representation == 'mixture':
            self._net = MixtureLSTMNet(self._num_items,
                                       self._embedding_dim,
                                       sparse=self._sparse)
        else:
            self._net = self._representation

        self._net = gpu(self._net, self._use_cuda)

        if self._optimizer_func is None:
            self._optimizer = optim.Adam(self._net.parameters(),
                                         weight_decay=self._l2,
                                         lr=self._learning_rate)
        else:
            self._optimizer = self._optimizer_func(self._net.parameters())

        if self._loss == 'pointwise':
            self._loss_func = pointwise_loss
        elif self._loss == 'bpr':
            self._loss_func = bpr_loss
        elif self._loss == 'hinge':
            self._loss_func = hinge_loss
        else:
            self._loss_func = adaptive_hinge_loss

    def _check_input(self, item_ids):

        if isinstance(item_ids, int):
            item_id_max = item_ids
        else:
            item_id_max = item_ids.max()

        if item_id_max >= self._num_items:
            raise ValueError('Maximum item id greater '
                             'than number of items in model.')

    def fit(self, interactions, verbose=False):
        """
        Fit the model.

        When called repeatedly, model fitting will resume from
        the point at which training stopped in the previous fit
        call.

        Parameters
        ----------

        interactions: :class:`spotlight.interactions.SequenceInteractions`
            The input sequence dataset.
        """

        sequences = interactions.sequences.astype(np.int64)

        if not self._initialized:
            self._initialize(interactions)

        self._check_input(sequences)

        for epoch_num in range(self._n_iter):

            sequences = shuffle(sequences, random_state=self._random_state)

            sequences_tensor = gpu(torch.from_numpy(sequences), self._use_cuda)

            epoch_loss = 0.0

            for minibatch_num, batch_sequence in enumerate(
                    minibatch(sequences_tensor, batch_size=self._batch_size)):

                sequence_var = batch_sequence

                user_representation, _ = self._net.user_representation(
                    sequence_var)

                positive_prediction = self._net(user_representation,
                                                sequence_var)

                if self._loss == 'adaptive_hinge':
                    negative_prediction = self._get_multiple_negative_predictions(
                        sequence_var.size(),
                        user_representation,
                        n=self._num_negative_samples)
                else:
                    negative_prediction = self._get_negative_prediction(
                        sequence_var.size(), user_representation)

                self._optimizer.zero_grad()

                loss = self._loss_func(positive_prediction,
                                       negative_prediction,
                                       mask=(sequence_var != PADDING_IDX))
                epoch_loss += loss.item()

                loss.backward()

                self._optimizer.step()

            epoch_loss /= minibatch_num + 1

            if verbose:
                print('Epoch {}: loss {}'.format(epoch_num, epoch_loss))

            if np.isnan(epoch_loss) or epoch_loss == 0.0:
                raise ValueError(
                    'Degenerate epoch loss: {}'.format(epoch_loss))

    def _get_negative_prediction(self, shape, user_representation):

        negative_items = sample_items(self._num_items,
                                      shape,
                                      random_state=self._random_state)
        negative_var = gpu(torch.from_numpy(negative_items), self._use_cuda)

        negative_prediction = self._net(user_representation, negative_var)

        return negative_prediction

    def _get_multiple_negative_predictions(self,
                                           shape,
                                           user_representation,
                                           n=5):
        batch_size, sliding_window = shape
        size = (n, ) + (1, ) * (user_representation.dim() - 1)
        negative_prediction = self._get_negative_prediction(
            (n * batch_size, sliding_window),
            user_representation.repeat(*size))

        return negative_prediction.view(n, batch_size, sliding_window)

    def predict(self, sequences, item_ids=None):
        """
        Make predictions: given a sequence of interactions, predict
        the next item in the sequence.

        Parameters
        ----------

        sequences: array, (1 x max_sequence_length)
            Array containing the indices of the items in the sequence.
        item_ids: array (num_items x 1), optional
            Array containing the item ids for which prediction scores
            are desired. If not supplied, predictions for all items
            will be computed.

        Returns
        -------

        predictions: array
            Predicted scores for all items in item_ids.
        """

        self._net.train(False)

        sequences = np.atleast_2d(sequences)

        if item_ids is None:
            item_ids = np.arange(self._num_items).reshape(-1, 1)

        self._check_input(item_ids)
        self._check_input(sequences)

        sequences = torch.from_numpy(sequences.astype(np.int64).reshape(1, -1))
        item_ids = torch.from_numpy(item_ids.astype(np.int64))

        sequence_var = gpu(sequences, self._use_cuda)
        item_var = gpu(item_ids, self._use_cuda)

        _, sequence_representations = self._net.user_representation(
            sequence_var)
        size = (len(item_var), ) + sequence_representations.size()[1:]
        out = self._net(sequence_representations.expand(*size), item_var)

        return cpu(out).detach().numpy().flatten()