def test_run(self):
     synfire_run.do_run(nNeurons,
                        run_times=run_times,
                        reset=reset,
                        get_all=True)
     neos = synfire_run.get_output_pop_all_list()
     spikes_0_0 = neo_convertor.convert_spikes(neos[0], 0)
     spikes_1_1 = neo_convertor.convert_spikes(neos[1], 1)
     self.assertEquals(53, len(spikes_0_0))
     self.assertEquals(27, len(spikes_1_1))
     spike_checker.synfire_spike_checker(spikes_0_0, nNeurons)
     spike_checker.synfire_spike_checker(spikes_1_1, nNeurons)
     # v + gsyn_exc + gsyn_ihn = 3 (spikes not in analogsignalarrays
     if pynn8_syntax:
         self.assertEquals(3, len(neos[0].segments[0].analogsignalarrays))
         self.assertEquals(3, len(neos[1].segments[1].analogsignalarrays))
     else:
         self.assertEquals(3, len(neos[0].segments[0].analogsignals))
         self.assertEquals(3, len(neos[1].segments[1].analogsignals))
     neo_compare.compare_segments(neos[0].segments[0], neos[1].segments[0])
     #   neo compare does all the compares so just some safety come once
     v_0_0 = neo_convertor.convert_data(neos[0], "v", 0)
     v_1_1 = neo_convertor.convert_data(neos[1], "v", 1)
     self.assertEquals(nNeurons * run_times[0], len(v_0_0))
     self.assertEquals(nNeurons * run_times[1], len(v_1_1))
     gsyn_exc_0_0 = neo_convertor.convert_data(neos[0], "gsyn_exc", 0)
     gsyn_exc_1_1 = neo_convertor.convert_data(neos[1], "gsyn_exc", 1)
     self.assertEquals(nNeurons * run_times[0], len(gsyn_exc_0_0))
     self.assertEquals(nNeurons * run_times[1], len(gsyn_exc_1_1))
     gsyn_inh_0_0 = neo_convertor.convert_data(neos[0], "gsyn_inh", 0)
     gsyn_inh_1_1 = neo_convertor.convert_data(neos[1], "gsyn_inh", 1)
     self.assertEquals(nNeurons * run_times[0], len(gsyn_inh_0_0))
     self.assertEquals(nNeurons * run_times[1], len(gsyn_inh_1_1))
Esempio n. 2
0
 def check_data(self, pop, expected_spikes, simtime):
     neo = pop.get_data("all")
     spikes = neo.segments[0].spiketrains
     v = neo.segments[0].filter(name="v")[0]
     gsyn_exc = neo.segments[0].filter(name="gsyn_exc")[0]
     for i in range(len(spikes)):
         check_neuron_data(spikes[i], v[:, i], gsyn_exc[:, i],
                           expected_spikes, simtime, pop.label, i)
     neo_compare.compare_segments(neo.segments[0], neo.segments[1])