Esempio n. 1
0
def eval_train(checkpoint_dir, checkpoint_list, image_set):
    '''Evaluate training on list of stored checkpoints'''
    results = dict()
    for cp in checkpoint_list:
        cp_path = checkpoint_dir + 'model.ckpt-' + str(cp)
        print('Evaluating: ' + cp_path)
        net = nn.init(cp_path)
        ap, recall = eval_set(net, image_set)
        results[cp] = (ap, recall)
    return results
Esempio n. 2
0
    return cp, np.mean(all_ap, axis=0), np.mean(all_rec, axis=0)


#CHECKPOINT = '/home/tommaso/scenicEx/data/scenic/checkpoints/train/model.ckpt-5500'
#CHECKPOINT = '/home/tommaso/scenicEx/data/matrix/checkpoints_overlap_250/train/model.ckpt-32670'
#CHECKPOINT = '/home/tommaso/scenicEx/data/matrix/checkpoints/train/model.ckpt-5250'
CHECKPOINT = '/home/tommaso/squeezeDet/data/webots/train/checkpoints/train/model.ckpt-1150'
FILE = '/home/tommaso/squeezeDet/data/webots/test/images/1003.png'

PREFIX = '/home/tommaso/scenicEx/data/matrix/'
PREFIX_LABELS = PREFIX + 'labels/'
PREFIX_IMAGES = PREFIX + 'images/'

image_set = '/home/tommaso/scenicEx/data/matrix/ImageSets/test_overlap.txt'

net = nn.init(CHECKPOINT)
pred = nn.classify(FILE, net, NN_PROB_THRESH)
print(pred)
#ap, recall = eval_set(net, image_set)

# avg_precs = []
# avg_recs = []
# max_precs = []
# max_recs = []
#
# for i in range(1,9,1):
#         precs = []
#         recs = []
#         for j in range(4950,5020,10):
#             checkpoint_path = '/home/tommaso/scenicEx/data/matrix/checkpoints_overlap_250/checkpoints_overlap_250_' + str(i) + '/train/model.ckpt-' + str(j)
#             print(checkpoint_path)
Esempio n. 3
0
    '''Write predictions into files'''

    f = open(preds_directory + filename + '.txt', "w")
    for p in prediction:
        kitti = box_2_kitti_format(p[2:])
        f.write("Car " + str(p[1]) + " " + " ".join([str(x)
                                                     for x in kitti]) + '\n')
    f.close()
    print('saved to {}'.format(preds_directory + filename + '.txt'))


IOU_THRESH = 0.5
IOU2_THRESH = 0.7
NN_PROB_THRESH = 0.5

PREFIX = './data/data/training/'
PREFIX_LABELS = PREFIX + 'label/'  # directory path to label
PREFIX_IMAGES = PREFIX + 'image/'  # directory path to image
SAVE_DIRECTORY = 'model_10000_prediction_label/'
checkpoint = './data/model_checkpoints/squeezeDet/model.ckpt-10000'

# This .txt is generated by following instruction in squeezeDet repo README
# go to ImageSet and execute command :
# ls ../directory_path_to_image | grep ".png" | sed s/.png// > train.txt
# this command parses out only the names of images into a .txt file
test_set = './data/gta/ImageSets/testing2_3_correct_label.txt'

net = nn.init(checkpoint)
print("model initiated!!")
c = evaluate_set(net, test_set)
print(c)