Esempio n. 1
0
hr_size = 256
target_net = DnCnn(layer_num=20)
target_net.load_state_dict(checkpoint)

model = SuperviseModel({
    'net': target_net, 
    'optimizer': torch.optim.Adam([{'name':'net_params', 'params':target_net.parameters(), 'base_lr':0.00005}], betas=(0.9, 0.999), weight_decay=0.0005),
    'lr_step_ratio': 0.5,
    'lr_step_size': 5,

    'supervise':{
        'out':  {'MSE_loss': {'obj': nn.MSELoss(size_average=True),  'factor':0.1, 'weight': 1.0}}, 
    },
    'metrics': {}
     
})

train_dataset = RandomCropPhoto2PhotoData({
            'crop_size': hr_size,
            'crop_stride': 2,
            'data_root': DATASET_DIR,
            'desc_file_path': os.path.join(DATASET_TXT_DIR, DATASET_ID, 'train.txt'),
})

valid_dataset = Photo2PhotoData({
            'data_root': DATASET_DIR,
            'desc_file_path': os.path.join(DATASET_TXT_DIR, DATASET_ID, 'val.txt'),
})


Esempio n. 2
0
            'psnr': {
                'obj': PSNR()
            }
        }
    },
    'not_show_gradient':
    True
})

# =================== dataset =====================================================================
train_dataset = RandomCropPhoto2PhotoData({
    'crop_size':
    50,
    'crop_stride':
    2,
    'data_root':
    DATASET_DIR,
    'desc_file_path':
    os.path.join(DATASET_TXT_DIR, 'train.txt'),
    'is_rotated':
    True
})

valid_dataset = RandomCropPhoto2PhotoData({
    'crop_size':
    50,
    'crop_stride':
    2,
    'data_root':
    DATASET_DIR,
    'desc_file_path':
    os.path.join(DATASET_TXT_DIR, 'val.txt'),