Esempio n. 1
0
def prep_bbox(sess,
              x,
              y,
              x_train,
              y_train,
              x_test,
              y_test,
              nb_epochs,
              batch_size,
              learning_rate,
              rng,
              nb_classes=10,
              img_rows=28,
              img_cols=28,
              nchannels=1):
    """
  Define and train a model that simulates the "remote"
  black-box oracle described in the original paper.
  :param sess: the TF session
  :param x: the input placeholder for MNIST
  :param y: the ouput placeholder for MNIST
  :param x_train: the training data for the oracle
  :param y_train: the training labels for the oracle
  :param x_test: the testing data for the oracle
  :param y_test: the testing labels for the oracle
  :param nb_epochs: number of epochs to train model
  :param batch_size: size of training batches
  :param learning_rate: learning rate for training
  :param rng: numpy.random.RandomState
  :return:
  """

    # Define TF model graph (for the black-box model)
    nb_filters = 64
    model = ModelBasicCNN('model1', nb_classes, nb_filters)
    loss = CrossEntropy(model, smoothing=0.1)
    predictions = model.get_logits(x)
    print("Defined TensorFlow model graph.")

    # Train an MNIST model
    train_params = {
        'nb_epochs': nb_epochs,
        'batch_size': batch_size,
        'learning_rate': learning_rate
    }
    train(sess, loss, x_train, y_train, args=train_params, rng=rng)

    # Print out the accuracy on legitimate data
    eval_params = {'batch_size': batch_size}
    accuracy = model_eval(sess,
                          x,
                          y,
                          predictions,
                          x_test,
                          y_test,
                          args=eval_params)
    print('Test accuracy of black-box on legitimate test '
          'examples: ' + str(accuracy))

    return model, predictions, accuracy
Esempio n. 2
0
def SNNL_example(train_start=0,
                 train_end=60000,
                 test_start=0,
                 test_end=10000,
                 nb_epochs=NB_EPOCHS,
                 batch_size=BATCH_SIZE,
                 learning_rate=LEARNING_RATE,
                 nb_filters=NB_FILTERS,
                 SNNL_factor=SNNL_FACTOR,
                 output_dir=OUTPUT_DIR):
    """
  A simple model trained to minimize Cross Entropy and Maximize Soft Nearest
  Neighbor Loss at each internal layer. This outputs a TSNE of the sign of
  the adversarial gradients of a trained model. A model with a negative
  SNNL_factor will show little or no class clusters, while a model with a
  0 SNNL_factor will have class clusters in the adversarial gradient direction.
  :param train_start: index of first training set example
  :param train_end: index of last training set example
  :param test_start: index of first test set example
  :param test_end: index of last test set example
  :param nb_epochs: number of epochs to train model
  :param batch_size: size of training batches
  :param learning_rate: learning rate for training
  :param SNNL_factor: multiplier for Soft Nearest Neighbor Loss
  :return: an AccuracyReport object
  """

    # Object used to keep track of (and return) key accuracies
    report = AccuracyReport()

    # Set TF random seed to improve reproducibility
    tf.set_random_seed(1234)

    # Set logging level to see debug information
    set_log_level(logging.DEBUG)

    # Create TF session
    sess = tf.Session()

    # Get MNIST data
    mnist = MNIST(train_start=train_start,
                  train_end=train_end,
                  test_start=test_start,
                  test_end=test_end)
    x_train, y_train = mnist.get_set('train')
    x_test, y_test = mnist.get_set('test')

    # Use Image Parameters
    img_rows, img_cols, nchannels = x_train.shape[1:4]
    nb_classes = y_train.shape[1]

    # Define input TF placeholder
    x = tf.placeholder(tf.float32, shape=(None, img_rows, img_cols, nchannels))
    y = tf.placeholder(tf.float32, shape=(None, nb_classes))

    # Train an MNIST model
    train_params = {
        'nb_epochs': nb_epochs,
        'batch_size': batch_size,
        'learning_rate': learning_rate
    }
    eval_params = {'batch_size': batch_size}
    rng = np.random.RandomState([2017, 8, 30])

    def do_eval(preds, x_set, y_set, report_key):
        acc = model_eval(sess, x, y, preds, x_set, y_set, args=eval_params)
        setattr(report, report_key, acc)
        print('Test accuracy on legitimate examples: %0.4f' % (acc))

    model = ModelBasicCNN('model', nb_classes, nb_filters)
    preds = model.get_logits(x)
    cross_entropy_loss = CrossEntropy(model)
    if not SNNL_factor:
        loss = cross_entropy_loss
    else:
        loss = SNNLCrossEntropy(model,
                                factor=SNNL_factor,
                                optimize_temperature=False)

    def evaluate():
        do_eval(preds, x_test, y_test, 'clean_train_clean_eval')

    train(sess,
          loss,
          x_train,
          y_train,
          evaluate=evaluate,
          args=train_params,
          rng=rng,
          var_list=model.get_params())

    do_eval(preds, x_train, y_train, 'train_clean_train_clean_eval')

    def imscatter(points, images, ax=None, zoom=1, cmap="hot"):
        if ax is None:
            ax = plt.gca()
        artists = []
        i = 0
        if not isinstance(cmap, list):
            cmap = [cmap] * len(points)
        for x0, y0 in points:
            transformed = (images[i] - np.min(images[i])) / \
                (np.max(images[i]) - np.min(images[i]))
            im = OffsetImage(transformed[:, :, 0], zoom=zoom, cmap=cmap[i])
            ab = AnnotationBbox(im, (x0, y0), xycoords='data', frameon=False)
            artists.append(ax.add_artist(ab))
            i += 1
        ax.update_datalim(np.column_stack(np.transpose(points)))
        ax.autoscale()
        ax.get_xaxis().set_ticks([])
        ax.get_yaxis().set_ticks([])
        return artists

    adv_grads = tf.sign(tf.gradients(cross_entropy_loss.fprop(x, y), x))
    feed_dict = {x: x_test[:batch_size], y: y_test[:batch_size]}
    adv_grads_val = sess.run(adv_grads, feed_dict=feed_dict)
    adv_grads_val = np.reshape(adv_grads_val,
                               (batch_size, img_rows * img_cols))

    X_embedded = TSNE(n_components=2, verbose=0).fit_transform(adv_grads_val)
    plt.figure(num=None,
               figsize=(50, 50),
               dpi=40,
               facecolor='w',
               edgecolor='k')
    plt.title(
        "TSNE of Sign of Adv Gradients, SNNLCrossEntropy Model, factor:" +
        str(FLAGS.SNNL_factor),
        fontsize=42)
    imscatter(X_embedded, x_test[:batch_size], zoom=2, cmap="Purples")
    plt.savefig(output_dir + 'adversarial_gradients_SNNL_factor_' +
                str(SNNL_factor) + '.png')
def cifar10_tutorial(train_start=0,
                     train_end=60000,
                     test_start=0,
                     test_end=10000,
                     nb_epochs=NB_EPOCHS,
                     batch_size=BATCH_SIZE,
                     learning_rate=LEARNING_RATE,
                     clean_train=CLEAN_TRAIN,
                     testing=False,
                     backprop_through_attack=BACKPROP_THROUGH_ATTACK,
                     nb_filters=NB_FILTERS,
                     num_threads=None,
                     label_smoothing=0.1):
    """
  CIFAR10 cleverhans tutorial
  :param train_start: index of first training set example
  :param train_end: index of last training set example
  :param test_start: index of first test set example
  :param test_end: index of last test set example
  :param nb_epochs: number of epochs to train model
  :param batch_size: size of training batches
  :param learning_rate: learning rate for training
  :param clean_train: perform normal training on clean examples only
                      before performing adversarial training.
  :param testing: if true, complete an AccuracyReport for unit tests
                  to verify that performance is adequate
  :param backprop_through_attack: If True, backprop through adversarial
                                  example construction process during
                                  adversarial training.
  :param label_smoothing: float, amount of label smoothing for cross entropy
  :return: an AccuracyReport object
  """

    # Object used to keep track of (and return) key accuracies
    report = AccuracyReport()

    # Set TF random seed to improve reproducibility
    tf.set_random_seed(1234)

    # Set logging level to see debug information
    set_log_level(logging.DEBUG)

    # Create TF session
    if num_threads:
        config_args = dict(intra_op_parallelism_threads=1)
    else:
        config_args = {}
    sess = tf.Session(config=tf.ConfigProto(**config_args))

    # Get CIFAR10 data
    data = CIFAR10(train_start=train_start,
                   train_end=train_end,
                   test_start=test_start,
                   test_end=test_end)
    dataset_size = data.x_train.shape[0]
    dataset_train = data.to_tensorflow()[0]
    dataset_train = dataset_train.map(
        lambda x, y: (random_shift(random_horizontal_flip(x)), y), 4)
    dataset_train = dataset_train.batch(batch_size)
    dataset_train = dataset_train.prefetch(16)
    x_train, y_train = data.get_set('train')
    x_test, y_test = data.get_set('test')

    # Use Image Parameters
    img_rows, img_cols, nchannels = x_test.shape[1:4]
    nb_classes = y_test.shape[1]

    # Define input TF placeholder
    x = tf.placeholder(tf.float32, shape=(None, img_rows, img_cols, nchannels))
    y = tf.placeholder(tf.float32, shape=(None, nb_classes))

    # Train an MNIST model
    train_params = {
        'nb_epochs': nb_epochs,
        'batch_size': batch_size,
        'learning_rate': learning_rate
    }
    eval_params = {'batch_size': batch_size}
    fgsm_params = {'eps': 0.3, 'clip_min': 0., 'clip_max': 1.}
    rng = np.random.RandomState([2017, 8, 30])

    def do_eval(preds, x_set, y_set, report_key, is_adv=None):
        acc = model_eval(sess, x, y, preds, x_set, y_set, args=eval_params)
        setattr(report, report_key, acc)
        if is_adv is None:
            report_text = None
        elif is_adv:
            report_text = 'adversarial'
        else:
            report_text = 'legitimate'
        if report_text:
            print('Test accuracy on %s examples: %0.4f' % (report_text, acc))

    if clean_train:
        model = ModelAllConvolutional('model1',
                                      nb_classes,
                                      nb_filters,
                                      input_shape=[32, 32, 3])
        preds = model.get_logits(x)
        loss = CrossEntropy(model, smoothing=label_smoothing)

        def evaluate():
            do_eval(preds, x_test, y_test, 'clean_train_clean_eval', False)

        train(sess,
              loss,
              None,
              None,
              dataset_train=dataset_train,
              dataset_size=dataset_size,
              evaluate=evaluate,
              args=train_params,
              rng=rng,
              var_list=model.get_params())

        # Calculate training error
        if testing:
            do_eval(preds, x_train, y_train, 'train_clean_train_clean_eval')

        # Initialize the Fast Gradient Sign Method (FGSM) attack object and
        # graph
        fgsm = FastGradientMethod(model, sess=sess)
        adv_x = fgsm.generate(x, **fgsm_params)
        preds_adv = model.get_logits(adv_x)

        # Evaluate the accuracy of the MNIST model on adversarial examples
        do_eval(preds_adv, x_test, y_test, 'clean_train_adv_eval', True)

        # Calculate training error
        if testing:
            do_eval(preds_adv, x_train, y_train, 'train_clean_train_adv_eval')

        print('Repeating the process, using adversarial training')

    # Create a new model and train it to be robust to FastGradientMethod
    model2 = ModelAllConvolutional('model2',
                                   nb_classes,
                                   nb_filters,
                                   input_shape=[32, 32, 3])
    fgsm2 = FastGradientMethod(model2, sess=sess)

    def attack(x):
        return fgsm2.generate(x, **fgsm_params)

    loss2 = CrossEntropy(model2, smoothing=label_smoothing, attack=attack)
    preds2 = model2.get_logits(x)
    adv_x2 = attack(x)

    if not backprop_through_attack:
        # For the fgsm attack used in this tutorial, the attack has zero
        # gradient so enabling this flag does not change the gradient.
        # For some other attacks, enabling this flag increases the cost of
        # training, but gives the defender the ability to anticipate how
        # the atacker will change their strategy in response to updates to
        # the defender's parameters.
        adv_x2 = tf.stop_gradient(adv_x2)
    preds2_adv = model2.get_logits(adv_x2)

    def evaluate2():
        # Accuracy of adversarially trained model on legitimate test inputs
        do_eval(preds2, x_test, y_test, 'adv_train_clean_eval', False)
        # Accuracy of the adversarially trained model on adversarial examples
        do_eval(preds2_adv, x_test, y_test, 'adv_train_adv_eval', True)

    # Perform and evaluate adversarial training
    train(sess,
          loss2,
          None,
          None,
          dataset_train=dataset_train,
          dataset_size=dataset_size,
          evaluate=evaluate2,
          args=train_params,
          rng=rng,
          var_list=model2.get_params())

    # Calculate training errors
    if testing:
        do_eval(preds2, x_train, y_train, 'train_adv_train_clean_eval')
        do_eval(preds2_adv, x_train, y_train, 'train_adv_train_adv_eval')

    return report
def mnist_tutorial_jsma(train_start=0, train_end=60000, test_start=0,
                        test_end=10000, viz_enabled=VIZ_ENABLED,
                        nb_epochs=NB_EPOCHS, batch_size=BATCH_SIZE,
                        source_samples=SOURCE_SAMPLES,
                        learning_rate=LEARNING_RATE):
  """
  MNIST tutorial for the Jacobian-based saliency map approach (JSMA)
  :param train_start: index of first training set example
  :param train_end: index of last training set example
  :param test_start: index of first test set example
  :param test_end: index of last test set example
  :param viz_enabled: (boolean) activate plots of adversarial examples
  :param nb_epochs: number of epochs to train model
  :param batch_size: size of training batches
  :param nb_classes: number of output classes
  :param source_samples: number of test inputs to attack
  :param learning_rate: learning rate for training
  :return: an AccuracyReport object
  """
  # Object used to keep track of (and return) key accuracies
  report = AccuracyReport()

  # Set TF random seed to improve reproducibility
  tf.set_random_seed(1234)

  # Create TF session and set as Keras backend session
  sess = tf.Session()
  print("Created TensorFlow session.")

  set_log_level(logging.DEBUG)

  # Get MNIST test data
  mnist = MNIST(train_start=train_start, train_end=train_end,
                test_start=test_start, test_end=test_end)
  x_train, y_train = mnist.get_set('train')
  x_test, y_test = mnist.get_set('test')

  # Obtain Image Parameters
  img_rows, img_cols, nchannels = x_train.shape[1:4]
  nb_classes = y_train.shape[1]

  # Define input TF placeholder
  x = tf.placeholder(tf.float32, shape=(None, img_rows, img_cols,
                                        nchannels))
  y = tf.placeholder(tf.float32, shape=(None, nb_classes))

  nb_filters = 64
  # Define TF model graph
  model = ModelBasicCNN('model1', nb_classes, nb_filters)
  preds = model.get_logits(x)
  loss = CrossEntropy(model, smoothing=0.1)
  print("Defined TensorFlow model graph.")

  ###########################################################################
  # Training the model using TensorFlow
  ###########################################################################

  # Train an MNIST model
  train_params = {
      'nb_epochs': nb_epochs,
      'batch_size': batch_size,
      'learning_rate': learning_rate
  }
  sess.run(tf.global_variables_initializer())
  rng = np.random.RandomState([2017, 8, 30])
  train(sess, loss, x_train, y_train, args=train_params, rng=rng)

  # Evaluate the accuracy of the MNIST model on legitimate test examples
  eval_params = {'batch_size': batch_size}
  accuracy = model_eval(sess, x, y, preds, x_test, y_test, args=eval_params)
  assert x_test.shape[0] == test_end - test_start, x_test.shape
  print('Test accuracy on legitimate test examples: {0}'.format(accuracy))
  report.clean_train_clean_eval = accuracy

  ###########################################################################
  # Craft adversarial examples using the Jacobian-based saliency map approach
  ###########################################################################
  print('Crafting ' + str(source_samples) + ' * ' + str(nb_classes - 1) +
        ' adversarial examples')

  # Keep track of success (adversarial example classified in target)
  results = np.zeros((nb_classes, source_samples), dtype='i')

  # Rate of perturbed features for each test set example and target class
  perturbations = np.zeros((nb_classes, source_samples), dtype='f')

  # Initialize our array for grid visualization
  grid_shape = (nb_classes, nb_classes, img_rows, img_cols, nchannels)
  grid_viz_data = np.zeros(grid_shape, dtype='f')

  # Instantiate a SaliencyMapMethod attack object
  jsma = SaliencyMapMethod(model, sess=sess)
  jsma_params = {'theta': 1., 'gamma': 0.1,
                 'clip_min': 0., 'clip_max': 1.,
                 'y_target': None}

  figure = None
  # Loop over the samples we want to perturb into adversarial examples
  for sample_ind in xrange(0, source_samples):
    print('--------------------------------------')
    print('Attacking input %i/%i' % (sample_ind + 1, source_samples))
    sample = x_test[sample_ind:(sample_ind + 1)]

    # We want to find an adversarial example for each possible target class
    # (i.e. all classes that differ from the label given in the dataset)
    current_class = int(np.argmax(y_test[sample_ind]))
    target_classes = other_classes(nb_classes, current_class)

    # For the grid visualization, keep original images along the diagonal
    grid_viz_data[current_class, current_class, :, :, :] = np.reshape(
        sample, (img_rows, img_cols, nchannels))

    # Loop over all target classes
    for target in target_classes:
      print('Generating adv. example for target class %i' % target)

      # This call runs the Jacobian-based saliency map approach
      one_hot_target = np.zeros((1, nb_classes), dtype=np.float32)
      one_hot_target[0, target] = 1
      jsma_params['y_target'] = one_hot_target
      adv_x = jsma.generate_np(sample, **jsma_params)

      # Check if success was achieved
      res = int(model_argmax(sess, x, preds, adv_x) == target)

      # Computer number of modified features
      adv_x_reshape = adv_x.reshape(-1)
      test_in_reshape = x_test[sample_ind].reshape(-1)
      nb_changed = np.where(adv_x_reshape != test_in_reshape)[0].shape[0]
      percent_perturb = float(nb_changed) / adv_x.reshape(-1).shape[0]

      # Display the original and adversarial images side-by-side
      if viz_enabled:
        figure = pair_visual(
            np.reshape(sample, (img_rows, img_cols, nchannels)),
            np.reshape(adv_x, (img_rows, img_cols, nchannels)), figure)

      # Add our adversarial example to our grid data
      grid_viz_data[target, current_class, :, :, :] = np.reshape(
          adv_x, (img_rows, img_cols, nchannels))

      # Update the arrays for later analysis
      results[target, sample_ind] = res
      perturbations[target, sample_ind] = percent_perturb

  print('--------------------------------------')

  # Compute the number of adversarial examples that were successfully found
  nb_targets_tried = ((nb_classes - 1) * source_samples)
  succ_rate = float(np.sum(results)) / nb_targets_tried
  print('Avg. rate of successful adv. examples {0:.4f}'.format(succ_rate))
  report.clean_train_adv_eval = 1. - succ_rate

  # Compute the average distortion introduced by the algorithm
  percent_perturbed = np.mean(perturbations)
  print('Avg. rate of perturbed features {0:.4f}'.format(percent_perturbed))

  # Compute the average distortion introduced for successful samples only
  percent_perturb_succ = np.mean(perturbations * (results == 1))
  print('Avg. rate of perturbed features for successful '
        'adversarial examples {0:.4f}'.format(percent_perturb_succ))

  # Close TF session
  sess.close()

  # Finally, block & display a grid of all the adversarial examples
  if viz_enabled:
    import matplotlib.pyplot as plt
    plt.close(figure)
    _ = grid_visual(grid_viz_data)

  return report
Esempio n. 5
0
def mnist_tutorial(train_start=0,
                   train_end=60000,
                   test_start=0,
                   test_end=10000,
                   nb_epochs=NB_EPOCHS,
                   batch_size=BATCH_SIZE,
                   learning_rate=LEARNING_RATE,
                   train_dir=TRAIN_DIR,
                   filename=FILENAME,
                   load_model=LOAD_MODEL,
                   testing=False,
                   label_smoothing=0.1):
    """
  MNIST CleverHans tutorial
  :param train_start: index of first training set example
  :param train_end: index of last training set example
  :param test_start: index of first test set example
  :param test_end: index of last test set example
  :param nb_epochs: number of epochs to train model
  :param batch_size: size of training batches
  :param learning_rate: learning rate for training
  :param train_dir: Directory storing the saved model
  :param filename: Filename to save model under
  :param load_model: True for load, False for not load
  :param testing: if true, test error is calculated
  :param label_smoothing: float, amount of label smoothing for cross entropy
  :return: an AccuracyReport object
  """
    tf.keras.backend.set_learning_phase(0)

    # Object used to keep track of (and return) key accuracies
    report = AccuracyReport()

    # Set TF random seed to improve reproducibility
    tf.set_random_seed(1234)

    if keras.backend.image_data_format() != 'channels_last':
        raise NotImplementedError(
            "this tutorial requires keras to be configured to channels_last format"
        )

    # Create TF session and set as Keras backend session
    sess = tf.Session()
    keras.backend.set_session(sess)

    # Get MNIST test data
    mnist = MNIST(train_start=train_start,
                  train_end=train_end,
                  test_start=test_start,
                  test_end=test_end)
    x_train, y_train = mnist.get_set('train')
    x_test, y_test = mnist.get_set('test')

    # Obtain Image Parameters
    img_rows, img_cols, nchannels = x_train.shape[1:4]
    nb_classes = y_train.shape[1]

    # Define input TF placeholder
    x = tf.placeholder(tf.float32, shape=(None, img_rows, img_cols, nchannels))
    y = tf.placeholder(tf.float32, shape=(None, nb_classes))

    # Define TF model graph
    model = cnn_model(img_rows=img_rows,
                      img_cols=img_cols,
                      channels=nchannels,
                      nb_filters=64,
                      nb_classes=nb_classes)
    preds = model(x)
    print("Defined TensorFlow model graph.")

    def evaluate():
        # Evaluate the accuracy of the MNIST model on legitimate test examples
        eval_params = {'batch_size': batch_size}
        acc = model_eval(sess, x, y, preds, x_test, y_test, args=eval_params)
        report.clean_train_clean_eval = acc
        #        assert X_test.shape[0] == test_end - test_start, X_test.shape
        print('Test accuracy on legitimate examples: %0.4f' % acc)

    # Train an MNIST model
    train_params = {
        'nb_epochs': nb_epochs,
        'batch_size': batch_size,
        'learning_rate': learning_rate,
        'train_dir': train_dir,
        'filename': filename
    }

    rng = np.random.RandomState([2017, 8, 30])
    if not os.path.exists(train_dir):
        os.mkdir(train_dir)

    ckpt = tf.train.get_checkpoint_state(train_dir)
    print(train_dir, ckpt)
    ckpt_path = False if ckpt is None else ckpt.model_checkpoint_path
    wrap = KerasModelWrapper(model)

    if load_model and ckpt_path:
        saver = tf.train.Saver()
        print(ckpt_path)
        saver.restore(sess, ckpt_path)
        print("Model loaded from: {}".format(ckpt_path))
        evaluate()
    else:
        print("Model was not loaded, training from scratch.")
        loss = CrossEntropy(wrap, smoothing=label_smoothing)
        train(sess,
              loss,
              x_train,
              y_train,
              evaluate=evaluate,
              args=train_params,
              rng=rng)

    # Calculate training error
    if testing:
        eval_params = {'batch_size': batch_size}
        acc = model_eval(sess, x, y, preds, x_train, y_train, args=eval_params)
        report.train_clean_train_clean_eval = acc

    # Initialize the Fast Gradient Sign Method (FGSM) attack object and graph
    fgsm = FastGradientMethod(wrap, sess=sess)
    fgsm_params = {'eps': 0.3, 'clip_min': 0., 'clip_max': 1.}
    adv_x = fgsm.generate(x, **fgsm_params)
    # Consider the attack to be constant
    adv_x = tf.stop_gradient(adv_x)
    preds_adv = model(adv_x)

    # Evaluate the accuracy of the MNIST model on adversarial examples
    eval_par = {'batch_size': batch_size}
    acc = model_eval(sess, x, y, preds_adv, x_test, y_test, args=eval_par)
    print('Test accuracy on adversarial examples: %0.4f\n' % acc)
    report.clean_train_adv_eval = acc

    # Calculating train error
    if testing:
        eval_par = {'batch_size': batch_size}
        acc = model_eval(sess,
                         x,
                         y,
                         preds_adv,
                         x_train,
                         y_train,
                         args=eval_par)
        report.train_clean_train_adv_eval = acc

    print("Repeating the process, using adversarial training")
    # Redefine TF model graph
    model_2 = cnn_model(img_rows=img_rows,
                        img_cols=img_cols,
                        channels=nchannels,
                        nb_filters=64,
                        nb_classes=nb_classes)
    wrap_2 = KerasModelWrapper(model_2)
    preds_2 = model_2(x)
    fgsm2 = FastGradientMethod(wrap_2, sess=sess)

    def attack(x):
        return fgsm2.generate(x, **fgsm_params)

    preds_2_adv = model_2(attack(x))
    loss_2 = CrossEntropy(wrap_2, smoothing=label_smoothing, attack=attack)

    def evaluate_2():
        # Accuracy of adversarially trained model on legitimate test inputs
        eval_params = {'batch_size': batch_size}
        accuracy = model_eval(sess,
                              x,
                              y,
                              preds_2,
                              x_test,
                              y_test,
                              args=eval_params)
        print('Test accuracy on legitimate examples: %0.4f' % accuracy)
        report.adv_train_clean_eval = accuracy

        # Accuracy of the adversarially trained model on adversarial examples
        accuracy = model_eval(sess,
                              x,
                              y,
                              preds_2_adv,
                              x_test,
                              y_test,
                              args=eval_params)
        print('Test accuracy on adversarial examples: %0.4f' % accuracy)
        report.adv_train_adv_eval = accuracy

    # Perform and evaluate adversarial training
    train(sess,
          loss_2,
          x_train,
          y_train,
          evaluate=evaluate_2,
          args=train_params,
          rng=rng)

    # Calculate training errors
    if testing:
        eval_params = {'batch_size': batch_size}
        accuracy = model_eval(sess,
                              x,
                              y,
                              preds_2,
                              x_train,
                              y_train,
                              args=eval_params)
        report.train_adv_train_clean_eval = accuracy
        accuracy = model_eval(sess,
                              x,
                              y,
                              preds_2_adv,
                              x_train,
                              y_train,
                              args=eval_params)
        report.train_adv_train_adv_eval = accuracy

    return report
def mnist_tutorial_cw(train_start=0,
                      train_end=60000,
                      test_start=0,
                      test_end=10000,
                      viz_enabled=VIZ_ENABLED,
                      nb_epochs=NB_EPOCHS,
                      batch_size=BATCH_SIZE,
                      source_samples=SOURCE_SAMPLES,
                      learning_rate=LEARNING_RATE,
                      attack_iterations=ATTACK_ITERATIONS,
                      model_path=MODEL_PATH,
                      targeted=TARGETED):
    """
  MNIST tutorial for Carlini and Wagner's attack
  :param train_start: index of first training set example
  :param train_end: index of last training set example
  :param test_start: index of first test set example
  :param test_end: index of last test set example
  :param viz_enabled: (boolean) activate plots of adversarial examples
  :param nb_epochs: number of epochs to train model
  :param batch_size: size of training batches
  :param nb_classes: number of output classes
  :param source_samples: number of test inputs to attack
  :param learning_rate: learning rate for training
  :param model_path: path to the model file
  :param targeted: should we run a targeted attack? or untargeted?
  :return: an AccuracyReport object
  """
    # Object used to keep track of (and return) key accuracies
    report = AccuracyReport()

    # Set TF random seed to improve reproducibility
    tf.set_random_seed(1234)

    # Create TF session
    sess = tf.Session()
    print("Created TensorFlow session.")

    set_log_level(logging.DEBUG)

    # Get MNIST test data
    mnist = MNIST(train_start=train_start,
                  train_end=train_end,
                  test_start=test_start,
                  test_end=test_end)
    x_train, y_train = mnist.get_set('train')
    x_test, y_test = mnist.get_set('test')

    # Obtain Image Parameters
    img_rows, img_cols, nchannels = x_train.shape[1:4]
    nb_classes = y_train.shape[1]

    # Define input TF placeholder
    x = tf.placeholder(tf.float32, shape=(None, img_rows, img_cols, nchannels))
    y = tf.placeholder(tf.float32, shape=(None, nb_classes))
    nb_filters = 64

    # Define TF model graph
    model = ModelBasicCNN('model1', nb_classes, nb_filters)
    preds = model.get_logits(x)
    loss = CrossEntropy(model, smoothing=0.1)
    print("Defined TensorFlow model graph.")

    ###########################################################################
    # Training the model using TensorFlow
    ###########################################################################

    # Train an MNIST model
    train_params = {
        'nb_epochs': nb_epochs,
        'batch_size': batch_size,
        'learning_rate': learning_rate,
        'filename': os.path.split(model_path)[-1]
    }

    rng = np.random.RandomState([2017, 8, 30])
    # check if we've trained before, and if we have, use that pre-trained model
    if os.path.exists(model_path + ".meta"):
        tf_model_load(sess, model_path)
    else:
        train(sess, loss, x_train, y_train, args=train_params, rng=rng)
        saver = tf.train.Saver()
        saver.save(sess, model_path)

    # Evaluate the accuracy of the MNIST model on legitimate test examples
    eval_params = {'batch_size': batch_size}
    accuracy = model_eval(sess, x, y, preds, x_test, y_test, args=eval_params)
    assert x_test.shape[0] == test_end - test_start, x_test.shape
    print('Test accuracy on legitimate test examples: {0}'.format(accuracy))
    report.clean_train_clean_eval = accuracy

    ###########################################################################
    # Craft adversarial examples using Carlini and Wagner's approach
    ###########################################################################
    nb_adv_per_sample = str(nb_classes - 1) if targeted else '1'
    print('Crafting ' + str(source_samples) + ' * ' + nb_adv_per_sample +
          ' adversarial examples')
    print("This could take some time ...")

    # Instantiate a CW attack object
    cw = CarliniWagnerL2(model, sess=sess)

    if viz_enabled:
        assert source_samples == nb_classes
        idxs = [
            np.where(np.argmax(y_test, axis=1) == i)[0][0]
            for i in range(nb_classes)
        ]
    if targeted:
        if viz_enabled:
            # Initialize our array for grid visualization
            grid_shape = (nb_classes, nb_classes, img_rows, img_cols,
                          nchannels)
            grid_viz_data = np.zeros(grid_shape, dtype='f')

            adv_inputs = np.array([[instance] * nb_classes
                                   for instance in x_test[idxs]],
                                  dtype=np.float32)
        else:
            adv_inputs = np.array([[instance] * nb_classes
                                   for instance in x_test[:source_samples]],
                                  dtype=np.float32)

        one_hot = np.zeros((nb_classes, nb_classes))
        one_hot[np.arange(nb_classes), np.arange(nb_classes)] = 1

        adv_inputs = adv_inputs.reshape(
            (source_samples * nb_classes, img_rows, img_cols, nchannels))
        adv_ys = np.array([one_hot] * source_samples,
                          dtype=np.float32).reshape(
                              (source_samples * nb_classes, nb_classes))
        yname = "y_target"
    else:
        if viz_enabled:
            # Initialize our array for grid visualization
            grid_shape = (nb_classes, 2, img_rows, img_cols, nchannels)
            grid_viz_data = np.zeros(grid_shape, dtype='f')

            adv_inputs = x_test[idxs]
        else:
            adv_inputs = x_test[:source_samples]

        adv_ys = None
        yname = "y"

    if targeted:
        cw_params_batch_size = source_samples * nb_classes
    else:
        cw_params_batch_size = source_samples
    cw_params = {
        'binary_search_steps': 1,
        yname: adv_ys,
        'max_iterations': attack_iterations,
        'learning_rate': CW_LEARNING_RATE,
        'batch_size': cw_params_batch_size,
        'initial_const': 10
    }

    adv = cw.generate_np(adv_inputs, **cw_params)

    eval_params = {'batch_size': np.minimum(nb_classes, source_samples)}
    if targeted:
        adv_accuracy = model_eval(sess,
                                  x,
                                  y,
                                  preds,
                                  adv,
                                  adv_ys,
                                  args=eval_params)
    else:
        if viz_enabled:
            err = model_eval(sess,
                             x,
                             y,
                             preds,
                             adv,
                             y_test[idxs],
                             args=eval_params)
            adv_accuracy = 1 - err
        else:
            err = model_eval(sess,
                             x,
                             y,
                             preds,
                             adv,
                             y_test[:source_samples],
                             args=eval_params)
            adv_accuracy = 1 - err

    if viz_enabled:
        for j in range(nb_classes):
            if targeted:
                for i in range(nb_classes):
                    grid_viz_data[i, j] = adv[i * nb_classes + j]
            else:
                grid_viz_data[j, 0] = adv_inputs[j]
                grid_viz_data[j, 1] = adv[j]

        print(grid_viz_data.shape)

    print('--------------------------------------')

    # Compute the number of adversarial examples that were successfully found
    print('Avg. rate of successful adv. examples {0:.4f}'.format(adv_accuracy))
    report.clean_train_adv_eval = 1. - adv_accuracy

    # Compute the average distortion introduced by the algorithm
    percent_perturbed = np.mean(
        np.sum((adv - adv_inputs)**2, axis=(1, 2, 3))**.5)
    print('Avg. L_2 norm of perturbations {0:.4f}'.format(percent_perturbed))

    # Close TF session
    sess.close()

    # Finally, block & display a grid of all the adversarial examples
    if viz_enabled:
        _ = grid_visual(grid_viz_data)

    return report
Esempio n. 7
0
def dknn_tutorial():
    # Get MNIST data.
    mnist = MNIST()
    x_train, y_train = mnist.get_set('train')
    x_test, y_test = mnist.get_set('test')

    # Use Image Parameters.
    img_rows, img_cols, nchannels = x_train.shape[1:4]
    nb_classes = y_train.shape[1]

    with tf.Session() as sess:
        with tf.variable_scope('dknn'):
            # Define input TF placeholder.
            x = tf.placeholder(tf.float32,
                               shape=(None, img_rows, img_cols, nchannels))
            y = tf.placeholder(tf.float32, shape=(None, nb_classes))

            # Define a model.
            model = make_basic_picklable_cnn()
            preds = model.get_logits(x)
            loss = CrossEntropy(model, smoothing=0.)

            # Define the test set accuracy evaluation.
            def evaluate():
                acc = model_eval(sess,
                                 x,
                                 y,
                                 preds,
                                 x_test,
                                 y_test,
                                 args={'batch_size': FLAGS.batch_size})
                print('Test accuracy on test examples: %0.4f' % acc)

            # Train the model
            train_params = {
                'nb_epochs': FLAGS.nb_epochs,
                'batch_size': FLAGS.batch_size,
                'learning_rate': FLAGS.lr
            }
            train(sess,
                  loss,
                  x_train,
                  y_train,
                  evaluate=evaluate,
                  args=train_params,
                  var_list=model.get_params())

            # Define callable that returns a dictionary of all activations for a dataset
            def get_activations(data):
                data_activations = {}
                for layer in layers:
                    layer_sym = tf.layers.flatten(model.get_layer(x, layer))
                    data_activations[layer] = batch_eval(
                        sess, [x], [layer_sym], [data],
                        args={'batch_size': FLAGS.batch_size})[0]
                return data_activations

            # Use a holdout of the test set to simulate calibration data for the DkNN.
            train_data = x_train
            train_labels = np.argmax(y_train, axis=1)
            cali_data = x_test[:FLAGS.nb_cali]
            y_cali = y_test[:FLAGS.nb_cali]
            cali_labels = np.argmax(y_cali, axis=1)
            test_data = x_test[FLAGS.nb_cali:]
            y_test = y_test[FLAGS.nb_cali:]

            # Extract representations for the training and calibration data at each layer of interest to the DkNN.
            layers = ['ReLU1', 'ReLU3', 'ReLU5', 'logits']

            # Wrap the model into a DkNNModel
            dknn = DkNNModel(FLAGS.neighbors,
                             layers,
                             get_activations,
                             train_data,
                             train_labels,
                             nb_classes,
                             scope='dknn')
            dknn.calibrate(cali_data, cali_labels)

            # Generate adversarial examples
            fgsm = FastGradientMethod(model, sess=sess)
            attack_params = {'eps': .25, 'clip_min': 0., 'clip_max': 1.}
            adv = sess.run(fgsm.generate(x, **attack_params),
                           feed_dict={x: test_data})

            # Test the DkNN on clean test data and FGSM test data
            for data_in, fname in zip([test_data, adv], ['test', 'adv']):
                dknn_preds = dknn.fprop_np(data_in)
                print(dknn_preds.shape)
                print(
                    np.mean(
                        np.argmax(dknn_preds, axis=1) == np.argmax(y_test,
                                                                   axis=1)))
                plot_reliability_diagram(dknn_preds, np.argmax(y_test, axis=1),
                                         '/tmp/dknn_' + fname + '.pdf')

    return True
Esempio n. 8
0
def train_sub(sess,
              x,
              y,
              bbox_preds,
              x_sub,
              y_sub,
              nb_classes,
              nb_epochs_s,
              batch_size,
              learning_rate,
              data_aug,
              lmbda,
              aug_batch_size,
              rng,
              img_rows=28,
              img_cols=28,
              nchannels=1):
    """
  This function creates the substitute by alternatively
  augmenting the training data and training the substitute.
  :param sess: TF session
  :param x: input TF placeholder
  :param y: output TF placeholder
  :param bbox_preds: output of black-box model predictions
  :param x_sub: initial substitute training data
  :param y_sub: initial substitute training labels
  :param nb_classes: number of output classes
  :param nb_epochs_s: number of epochs to train substitute model
  :param batch_size: size of training batches
  :param learning_rate: learning rate for training
  :param data_aug: number of times substitute training data is augmented
  :param lmbda: lambda from arxiv.org/abs/1602.02697
  :param rng: numpy.random.RandomState instance
  :return:
  """
    # Define TF model graph (for the black-box model)
    model_sub = ModelSubstitute('model_s', nb_classes)
    preds_sub = model_sub.get_logits(x)
    loss_sub = CrossEntropy(model_sub, smoothing=0)

    print("Defined TensorFlow model graph for the substitute.")

    # Define the Jacobian symbolically using TensorFlow
    grads = jacobian_graph(preds_sub, x, nb_classes)

    # Train the substitute and augment dataset alternatively
    for rho in xrange(data_aug):
        print("Substitute training epoch #" + str(rho))
        train_params = {
            'nb_epochs': nb_epochs_s,
            'batch_size': batch_size,
            'learning_rate': learning_rate
        }
        with TemporaryLogLevel(logging.WARNING, "cleverhans.utils.tf"):
            train(sess,
                  loss_sub,
                  x_sub,
                  to_categorical(y_sub, nb_classes),
                  init_all=False,
                  args=train_params,
                  rng=rng,
                  var_list=model_sub.get_params())

        # If we are not at last substitute training iteration, augment dataset
        if rho < data_aug - 1:
            print("Augmenting substitute training data.")
            # Perform the Jacobian augmentation
            lmbda_coef = 2 * int(int(rho / 3) != 0) - 1
            x_sub = jacobian_augmentation(sess, x, x_sub, y_sub, grads,
                                          lmbda_coef * lmbda, aug_batch_size)

            print("Labeling substitute training data.")
            # Label the newly generated synthetic points using the black-box
            y_sub = np.hstack([y_sub, y_sub])
            x_sub_prev = x_sub[int(len(x_sub) / 2):]
            eval_params = {'batch_size': batch_size}
            bbox_val = batch_eval(sess, [x], [bbox_preds], [x_sub_prev],
                                  args=eval_params)[0]
            # Note here that we take the argmax because the adversary
            # only has access to the label (not the probabilities) output
            # by the black-box model
            y_sub[int(len(x_sub) / 2):] = np.argmax(bbox_val, axis=1)

    return model_sub, preds_sub
def mnist_tutorial(train_start=0,
                   train_end=60000,
                   test_start=0,
                   test_end=10000,
                   nb_epochs=NB_EPOCHS,
                   batch_size=BATCH_SIZE,
                   learning_rate=LEARNING_RATE,
                   clean_train=CLEAN_TRAIN,
                   testing=False,
                   backprop_through_attack=BACKPROP_THROUGH_ATTACK,
                   nb_filters=NB_FILTERS,
                   num_threads=None,
                   label_smoothing=0.1):
    """
  MNIST cleverhans tutorial
  :param train_start: index of first training set example
  :param train_end: index of last training set example
  :param test_start: index of first test set example
  :param test_end: index of last test set example
  :param nb_epochs: number of epochs to train model
  :param batch_size: size of training batches
  :param learning_rate: learning rate for training
  :param clean_train: perform normal training on clean examples only
                      before performing adversarial training.
  :param testing: if true, complete an AccuracyReport for unit tests
                  to verify that performance is adequate
  :param backprop_through_attack: If True, backprop through adversarial
                                  example construction process during
                                  adversarial training.
  :param label_smoothing: float, amount of label smoothing for cross entropy
  :return: an AccuracyReport object
  """

    # Object used to keep track of (and return) key accuracies
    report = AccuracyReport()

    # Set TF random seed to improve reproducibility
    tf.set_random_seed(1234)

    # Set logging level to see debug information
    set_log_level(logging.DEBUG)

    # Create TF session
    if num_threads:
        config_args = dict(intra_op_parallelism_threads=1)
    else:
        config_args = {}
    sess = tf.Session(config=tf.ConfigProto(**config_args))

    # Get MNIST test data
    mnist = MNIST(train_start=train_start,
                  train_end=train_end,
                  test_start=test_start,
                  test_end=test_end)
    x_train, y_train = mnist.get_set('train')
    x_test, y_test = mnist.get_set('test')

    # Use Image Parameters
    img_rows, img_cols, nchannels = x_train.shape[1:4]
    nb_classes = y_train.shape[1]

    # Define input TF placeholder
    x = tf.placeholder(tf.float32, shape=(None, img_rows, img_cols, nchannels))
    y = tf.placeholder(tf.float32, shape=(None, nb_classes))

    # Train an MNIST model
    train_params = {
        'nb_epochs': nb_epochs,
        'batch_size': batch_size,
        'learning_rate': learning_rate
    }
    eval_params = {'batch_size': batch_size}
    fgsm_params = {'eps': 0.3, 'clip_min': 0., 'clip_max': 1.}
    rng = np.random.RandomState([2017, 8, 30])

    def do_eval(preds, x_set, y_set, report_key, is_adv=None):
        """
    Run the evaluation and print the results.
    """
        acc = model_eval(sess, x, y, preds, x_set, y_set, args=eval_params)
        setattr(report, report_key, acc)
        if is_adv is None:
            report_text = None
        elif is_adv:
            report_text = 'adversarial'
        else:
            report_text = 'legitimate'
        if report_text:
            print('Test accuracy on %s examples: %0.4f' % (report_text, acc))

    if clean_train:
        model = make_basic_picklable_cnn()
        # Tag the model so that when it is saved to disk, future scripts will
        # be able to tell what data it was trained on
        model.dataset_factory = mnist.get_factory()
        preds = model.get_logits(x)
        assert len(model.get_params()) > 0
        loss = CrossEntropy(model, smoothing=label_smoothing)

        def evaluate():
            """
      Run evaluation for the naively trained model on clean examples.
      """
            do_eval(preds, x_test, y_test, 'clean_train_clean_eval', False)

        train(sess,
              loss,
              x_train,
              y_train,
              evaluate=evaluate,
              args=train_params,
              rng=rng,
              var_list=model.get_params())

        with sess.as_default():
            save("clean_model.joblib", model)

            print("Now that the model has been saved, you can evaluate it in a"
                  " separate process using `evaluate_pickled_model.py`. "
                  "You should get exactly the same result for both clean and "
                  "adversarial accuracy as you get within this program.")

        # Calculate training error
        if testing:
            do_eval(preds, x_train, y_train, 'train_clean_train_clean_eval')

        # Initialize the Fast Gradient Sign Method (FGSM) attack object and
        # graph
        fgsm = FastGradientMethod(model, sess=sess)
        adv_x = fgsm.generate(x, **fgsm_params)
        preds_adv = model.get_logits(adv_x)

        # Evaluate the accuracy of the MNIST model on adversarial examples
        do_eval(preds_adv, x_test, y_test, 'clean_train_adv_eval', True)

        # Calculate training error
        if testing:
            do_eval(preds_adv, x_train, y_train, 'train_clean_train_adv_eval')

        print('Repeating the process, using adversarial training')

    # Create a new model and train it to be robust to FastGradientMethod
    model2 = make_basic_picklable_cnn()
    # Tag the model so that when it is saved to disk, future scripts will
    # be able to tell what data it was trained on
    model2.dataset_factory = mnist.get_factory()
    fgsm2 = FastGradientMethod(model2, sess=sess)

    def attack(x):
        """Return an adversarial example near clean example `x`"""
        return fgsm2.generate(x, **fgsm_params)

    loss2 = CrossEntropy(model2, smoothing=label_smoothing, attack=attack)
    preds2 = model2.get_logits(x)
    adv_x2 = attack(x)

    if not backprop_through_attack:
        # For the fgsm attack used in this tutorial, the attack has zero
        # gradient so enabling this flag does not change the gradient.
        # For some other attacks, enabling this flag increases the cost of
        # training, but gives the defender the ability to anticipate how
        # the atacker will change their strategy in response to updates to
        # the defender's parameters.
        adv_x2 = tf.stop_gradient(adv_x2)
    preds2_adv = model2.get_logits(adv_x2)

    def evaluate_adv():
        """
    Evaluate the adversarially trained model.
    """
        # Accuracy of adversarially trained model on legitimate test inputs
        do_eval(preds2, x_test, y_test, 'adv_train_clean_eval', False)
        # Accuracy of the adversarially trained model on adversarial examples
        do_eval(preds2_adv, x_test, y_test, 'adv_train_adv_eval', True)

    # Perform and evaluate adversarial training
    train(sess,
          loss2,
          x_train,
          y_train,
          evaluate=evaluate_adv,
          args=train_params,
          rng=rng,
          var_list=model2.get_params())

    with sess.as_default():
        save("adv_model.joblib", model2)
        print(
            "Now that the model has been saved, you can evaluate it in a "
            "separate process using "
            "`python evaluate_pickled_model.py adv_model.joblib`. "
            "You should get exactly the same result for both clean and "
            "adversarial accuracy as you get within this program."
            " You can also move beyond the tutorials directory and run the "
            " real `compute_accuracy.py` script (make sure cleverhans/scripts "
            "is in your PATH) to see that this FGSM-trained "
            "model is actually not very robust---it's just a model that trains "
            " quickly so the tutorial does not take a long time")

    # Calculate training errors
    if testing:
        do_eval(preds2, x_train, y_train, 'train_adv_train_clean_eval')
        do_eval(preds2_adv, x_train, y_train, 'train_adv_train_adv_eval')

    return report