Esempio n. 1
0
def get_csgnet():
    config = read_config.Config("config_synthetic.yml")

    # Encoder
    encoder_net = Encoder(config.encoder_drop)
    encoder_net = encoder_net.to(device)

    # Load the terminals symbols of the grammar
    with open("terminals.txt", "r") as file:
        unique_draw = file.readlines()
    for index, e in enumerate(unique_draw):
        unique_draw[index] = e[0:-1]

    imitate_net = ImitateJoint(hd_sz=config.hidden_size,
                               input_size=config.input_size,
                               encoder=encoder_net,
                               mode=config.mode,
                               num_draws=len(unique_draw),
                               canvas_shape=config.canvas_shape)
    imitate_net = imitate_net.to(device)

    print("pre loading model")
    pretrained_dict = torch.load(config.pretrain_modelpath,
                                 map_location=device)
    imitate_net_dict = imitate_net.state_dict()
    imitate_pretrained_dict = {
        k: v
        for k, v in pretrained_dict.items() if k in imitate_net_dict
    }
    imitate_net_dict.update(imitate_pretrained_dict)
    imitate_net.load_state_dict(imitate_net_dict)

    for param in imitate_net.parameters():
        param.requires_grad = True

    for param in encoder_net.parameters():
        param.requires_grad = True

    return (encoder_net, imitate_net)
Esempio n. 2
0
                           canvas_shape=config.canvas_shape)
imitate_net.cuda()
imitate_net.epsilon = config.eps

if config.preload_model:
    print("pre loading model")
    pretrained_dict = torch.load(config.pretrain_modelpath)
    imitate_net_dict = imitate_net.state_dict()
    pretrained_dict = {
        k: v
        for k, v in pretrained_dict.items() if k in imitate_net_dict
    }
    imitate_net_dict.update(pretrained_dict)
    imitate_net.load_state_dict(imitate_net_dict)

for param in imitate_net.parameters():
    param.requires_grad = True

for param in encoder_net.parameters():
    param.requires_grad = True
generator = Generator()
reinforce = Reinforce(unique_draws=unique_draw)

if config.optim == "sgd":
    optimizer = optim.SGD(
        [para for para in imitate_net.parameters() if para.requires_grad],
        weight_decay=config.weight_decay,
        momentum=0.9,
        lr=config.lr,
        nesterov=False)
elif config.optim == "adam":
Esempio n. 3
0
    unique_draw = file.readlines()
for index, e in enumerate(unique_draw):
    unique_draw[index] = e[0:-1]

# if config.preload_model:
#     print("pre loading model")
#     pretrained_dict = torch.load(config.pretrain_modelpath)
#     imitate_net_dict = imitate_net.state_dict()
#     pretrained_dict = {
#         k: v
#         for k, v in pretrained_dict.items() if k in imitate_net_dict
#     }
#     imitate_net_dict.update(pretrained_dict)
#     imitate_net.load_state_dict(imitate_net_dict)

for param in imitate_net.parameters():
    param.requires_grad = True

for param in encoder_net.parameters():
    param.requires_grad = True

max_len = max(dataset_sizes.keys())

optimizer = optim.Adam(
    [para for para in imitate_net.parameters() if para.requires_grad],
    weight_decay=config.weight_decay,
    lr=config.lr)

reduce_plat = LearningRate(optimizer,
                           init_lr=config.lr,
                           lr_dacay_fact=0.2,