def plot_time_vs_epochs(train_data, test_data): timer = Timer() number_epochs = [] time = [] total_time = 0 # Build Neural Network neural_network = build_network() # 200 runs of 100 epochs each for i in range(100): number_epochs.append(i) timer.start() for j in range(1000): for data in test_data: neural_network.feed(data) this_time = timer.stop() time.append(this_time) total_time += this_time mean_time = total_time / len(number_epochs) # Plot plt.figure() plt.title("Time Taken in 1000 Epochs", fontsize=20) plt.xlabel('Number of Experiment') plt.ylabel('Time (seconds)') plt.scatter(number_epochs, time, color='blue') plt.axhline(y=mean_time, color='r', linestyle='-') plt.show()
def plot_genetic_algorithm_time(): timer = Timer() experiments = [] time = [] total_time = 0 # Build Neural Network genetic_algorithm = GeneticFixedTopology(100, 1000) # 20 runs of 1000 generations each for i in range(20): experiments.append(i) timer.start() genetic_algorithm.run() this_time = timer.stop() time.append(this_time) genetic_algorithm = GeneticFixedTopology(100, 1000) total_time += this_time mean_time = total_time / len(experiments) # Plot plt.figure() plt.title("Time Taken in 1000 Generations", fontsize=20) plt.xlabel('experimento') plt.ylabel('tiempo (segundos)') plt.scatter(experiments, time, color='blue') plt.axhline(y=mean_time, color='r', linestyle='-') plt.show()