Esempio n. 1
0
def detectors(seed):
    if os.environ.get('CIRCLECI', False):
        dets = [
            AutoEncoder(num_epochs=1, seed=seed),
            DAGMM(num_epochs=1, seed=seed),
            DAGMM(num_epochs=1,
                  autoencoder_type=DAGMM.AutoEncoder.LSTM,
                  seed=seed),
            LSTMAD(num_epochs=1, seed=seed),
            LSTMED(num_epochs=1, seed=seed),
            RecurrentEBM(num_epochs=1, seed=seed)
        ]
    else:
        standard_epochs = 40
        dets = [
            AutoEncoder(num_epochs=standard_epochs, seed=seed),
            DAGMM(num_epochs=standard_epochs, seed=seed, lr=1e-4),
            DAGMM(num_epochs=standard_epochs,
                  autoencoder_type=DAGMM.AutoEncoder.LSTM,
                  seed=seed),
            LSTMAD(num_epochs=standard_epochs, seed=seed),
            LSTMED(num_epochs=standard_epochs, seed=seed),
            RecurrentEBM(num_epochs=standard_epochs, seed=seed)
        ]

    return sorted(dets, key=lambda x: x.framework)
Esempio n. 2
0
def detectors(seed):
    standard_epochs = 40
    dets = [AutoEncoder(num_epochs=standard_epochs, seed=seed),
            DAGMM(num_epochs=standard_epochs, seed=seed, lr=1e-4),
            DAGMM(num_epochs=standard_epochs, autoencoder_type=DAGMM.AutoEncoder.LSTM, seed=seed),
            LSTMAD(num_epochs=standard_epochs, seed=seed), LSTMED(num_epochs=standard_epochs, seed=seed),
            RecurrentEBM(num_epochs=standard_epochs, seed=seed)]

    return sorted(dets, key=lambda x: x.framework)
Esempio n. 3
0
def different_window_detectors(seed):
    standard_epochs = 40
    dets = [LSTMAD(num_epochs=standard_epochs)]
    for window_size in [13, 25, 50, 100]:
        dets.extend([
            LSTMED(name='LSTMED Window: ' + str(window_size),
                   num_epochs=standard_epochs,
                   seed=seed,
                   sequence_length=window_size),
            AutoEncoder(name='AE Window: ' + str(window_size),
                        num_epochs=standard_epochs,
                        seed=seed,
                        sequence_length=window_size)
        ])
    return dets
        OUTLIER_CLASS = 0
        mnist = tf.keras.datasets.mnist
        (x_train, y_train), (x_test, y_test) = mnist.load_data()
        # Label outliers with 1 and normal digits with 0
        y_train, y_test = (y_train == OUTLIER_CLASS), (y_test == OUTLIER_CLASS)
        x_train = x_train[~y_train]  # Remove outliers from the training set
        x_train, x_test = x_train / 255, x_test / 255
        x_train, x_test = x_train.reshape(-1, 784), x_test.reshape(-1, 784)
        self._data = tuple(pd.DataFrame(data=data) for data in [x_train, y_train, x_test, y_test])

x_train, y_train, x_test, y_test = MNIST(seed=0).data()
# Use fewer instances for demonstration purposes
x_train, y_train = x_train[:1000], y_train[:1000]
x_test, y_test = x_test[:100], y_test[:100]

model = AutoEncoder(sequence_length=1, num_epochs=40, hidden_size=10, lr=1e-4)
model.fit(x_train)

error = model.predict(x_test)
print(roc_auc_score(y_test, error))  # e.g. 0.8614


#
"""Borrowed from https://github.com/scikit-learn/scikit-learn/blob/master/examples/manifold/plot_lle_digits.py#L44"""
error = (error - error.min()) / (error.max() - error.min())  # Normalize error
x_test = x_test.values
y_random = np.random.rand(len(x_test)) * 2 - 1
plt.figure(figsize=(20, 10))
ax = plt.subplot(111)
if hasattr(offsetbox, 'AnnotationBbox'):
    shown_images = np.array([[1., 1.]])
Esempio n. 5
0
import glob
import json
import os

import numpy as np
import pandas as pd
import pickle

from src.algorithms import AutoEncoder, DAGMM, RecurrentEBM, LSTMAD, LSTMED
from src.datasets.pandas import PandasDataset
from src.evaluation import Evaluator

seed = np.random.randint(np.iinfo(np.uint32).max, size=1, dtype=np.uint32)[0]
standard_epochs = 40
window_size = 13
dets = [AutoEncoder(num_epochs=standard_epochs, seed=seed)]


def main():
    eval_json()


def eval_json():
    with open('QueryResult.json') as json_file:
        dict_train = json.load(json_file)
        df = pd.DataFrame.from_records(dict_train)
    ds = PandasDataset('temperatur_sonne_calvin',
                       df,
                       ignore=['TYPE', 'LOCATIONID', 'TS'])
    evaluator = Evaluator([ds], get_detectors, seed=seed)
    evaluator.train()