Esempio n. 1
0
    def test_abs(self, tmp_path):
        # TEST the absolute threshold
        in_path = self.create_test_consec_data(tmp_path)

        e = EventDetector(in_path)
        # BELOW Q10
        e.detect(
            variable="precip", time_period="month", hilo="low", method="abs", value=0.3
        )

        assert (
            len(e.thresh.month) == 12
        ), f"Expected the threshold \
        calculation to be 12 (one for each month)"

        # all monthly thresholds should be 10
        got = e.thresh.precip.mean(dim=["lat", "lon"]).values
        assert all(
            got == 0.3
        ), f"\
        Expected all monthly threshold values in e.thresh to be 0.3. Got: {got}"

        # longest run should be 4 (below 0.3)
        runs = e.calculate_runs()
        assert runs.max().values == 4, f"Expected the longest run to be 4 (below 0.3)"
Esempio n. 2
0
    def test_q90(self, tmp_path):
        # TEST the mean threshold
        in_path = self.create_test_consec_data(tmp_path)

        e = EventDetector(in_path)
        # ABOVE Q90
        e.detect(variable="precip", time_period="month", hilo="high", method="q90")

        assert (
            len(e.thresh.month) == 12
        ), f"Expected the threshold \
        calculation to be 12 (one for each month)"

        # all monthly thresholds should be 10
        got = e.thresh.precip.mean(dim=["lat", "lon"]).values
        assert all(
            got == 10
        ), f"\
        Expected all monthly threshold values in e.thresh to be 10. Got: {got}"

        # longest run should be 0 (exceeding Q90)
        runs = e.calculate_runs()
        assert (
            runs.max().values == 0
        ), f"Expected the longest run to be 0 (exceeding q90)"
    def test_number_of_consecutive_events(self, tmp_path):
        in_path = self.create_test_consec_data(tmp_path)

        e = EventDetector(in_path)
        e.detect(variable='precip',
                 time_period='dayofyear',
                 hilo='low',
                 method='std')

        # check boolean dtype
        assert e.exceedences.dtype == np.dtype('bool'), f"Expected a\
        boolean array but got: {e.exceedences.dtype}"

        # check the threshold calculation
        assert e.thresh.precip.max().values == 10, f"Expected max to be 10\
        got: {e.thresh.precip.max().values}"

        # test run size
        runs = e.calculate_runs()
        assert runs.max().values == 4, f"Expected max run length to be 4\
        Got: {runs.max().values}"

        # ensure they are of the correct time slice
        max_run_time = runs.where(runs == runs.max(), drop=True).squeeze()
        expected = pd.to_datetime('2000-04-30')
        got = pd.to_datetime(max_run_time.time.values)
        assert got == expected, f"Expected\
        the maximum time slice to be: {expected} Got: {got}"

        # ensure the second largest timeslice is
        second_largest_run_time = runs.where(runs == 3, drop=True).squeeze()
        expected = pd.to_datetime('2000-11-30')
        got = pd.to_datetime(second_largest_run_time.time.values)
        assert got == expected, f"Expected\
    def test_initialise_event_detector(self, tmp_path):
        _create_dummy_precip_data(tmp_path)

        data_dir = tmp_path / 'data' / 'interim'
        precip_dir = data_dir / 'chirps_preprocessed' / 'chirps_kenya.nc'

        e = EventDetector(precip_dir)

        assert 'precip' in [v for v in e.ds.variables], f"\
        Expected precip to be a variable.\
        Got: {[v for v in e.ds.variables]}"

        assert e.ds.precip.shape == (36, 30, 30), f"\
    def test_q10(self, tmp_path):
        # TEST the q10 threshold
        in_path = self.create_test_consec_data(tmp_path)

        e = EventDetector(in_path)
        # BELOW Q10
        e.detect(variable='precip',
                 time_period='month',
                 hilo='low',
                 method='q10')

        assert len(e.thresh.month) == 12, f"Expected the threshold \
        calculation to be 12 (one for each month)"

        # all monthly thresholds should be 10
        got = e.thresh.precip.mean(dim=['lat', 'lon']).values
        assert all(got == 10), f"\
        Expected all monthly threshold values in e.thresh to be 10. Got: {got}"

        # longest run should be 0 (below Q10)
        runs = e.calculate_runs()
        assert runs.max(
        ).values == 4, f"Expected the longest run to be 4 (below q10)"
Esempio n. 6
0
    def test_initialise_event_detector(self, tmp_path):
        _create_dummy_precip_data(tmp_path)

        data_dir = tmp_path / "data" / "interim"
        precip_dir = data_dir / "chirps_preprocessed" / "data_kenya.nc"

        e = EventDetector(precip_dir)

        assert "precip" in [
            v for v in e.ds.variables
        ], f"\
        Expected precip to be a variable.\
        Got: {[v for v in e.ds.variables]}"

        assert e.ds.precip.shape == (
            36,
            30,
            30,
        ), f"\
from pathlib import Path
import sys
sys.path.append('..')

from src.analysis import EventDetector
data_dir = Path('data')
chirps_dir = data_dir / 'interim' / 'chirps_preprocessed' / 'chirps_kenya.nc'

e = EventDetector(chirps_dir)

variable = 'precip'
hilo = 'low'
method = 'std'

e.detect(variable=variable, time_period='dayofyear', hilo=hilo, method=method)

# plot the output
exceed = e.reapply_mask_to_boolean_xarray('precip', e.exceedences)

fig, ax = plt.subplots()

df = exceed.sum(dim=['lat', 'lon']).to_dataframe()
df.plot(ax=ax, label=f'{variable}_{hilo}_{method}', legend=True)
df.rolling(24).mean().plot(ax=ax, label='24mth mean')

ax.set_title(f'Number of Pixels with {variable} \
    {"below" if hilo == "low" else "above"} {method}')

fig.savefig('.png')
Esempio n. 8
0
from pathlib import Path
from src.analysis import EventDetector

data_dir = Path("data")
interim_dir = data_dir / "interim"
p_dir = interim_dir / "chirps_preprocessed" / "chirps_19812019_kenya.nc"
v_dir = interim_dir / "vhi_preprocessed" / "vhi_preprocess_kenya.nc"

e = EventDetector(p_dir)
e.detect(variable="precip", time_period="dayofyear", hilo="low", method="std")

runs = e.calculate_runs()