Esempio n. 1
0
def test_wrapper(args: Namespace) -> None:
    model_name = args.model
    model = load_model(model_name)

    if args.edit:
        predictions, data_iter, metadata = test_model_masked(
            model, args.dataset, args.edit)
        edit_predictions(predictions, data_iter, metadata)
    else:
        predictions, test_iter = test_model_masked(model, args.dataset,
                                                   args.edit)
        plot_predictions(predictions, test_iter)
Esempio n. 2
0
def run_gui(folder: str, model) -> None:
    predictions, data_iter, metadata = test_model_masked(
        model, folder, True, dems=512
    )
    edit_predictions(
        predictions, data_iter, metadata, dem=512
    )
Esempio n. 3
0
def test_wrapper(args: Namespace) -> None:
    model_name = args.model
    model = load_model(model_name)

    if model_type(model) != dataset_type(args.dataset):
        print("ERROR: This dataset is not compatible with your model")
        return
    if dataset_type(args.dataset) == ModelType.MASKED:
        predictions, test_iter = test_model_masked(model, args.dataset)
        plot_masked_predictions(predictions, test_iter, args.dataset)
    else:

        details, confusion_matrix = test_model_binary(model, args.dataset)

        model_dir = os.path.dirname(path_from_model_name(model_name))
        with open(os.path.join(model_dir, 'results.csv'), 'w') as f:
            write_dict_to_csv(details, f)

        plot_confusion_chart(confusion_matrix)
        plot_predictions(details['Percent'], args.dataset)
Esempio n. 4
0
def mkdata_wrapper(args: Namespace) -> None:

    etl_wm()
    setup_data(args.size)
    dataset_fpath = f"syntheticTriainingData{date.isoformat(date.today())}"
    dataset_dir = os.path.join('datasets', args.directory)
    model_name = args.model
    model = load_model(model_name)

    if args.environment:
        final_dataset_fpath = os.path.join(
            dataset_dir, f'{args.dataset}_{args.environment}')
        dataset = os.path.join(args.directory,
                               f'{args.dataset}_{args.environment}')
    else:
        final_dataset_fpath = os.path.join('datasets', args.dataset)
        dataset = args.dataset

    if not os.path.isdir(dataset_dir):
        os.mkdir(dataset_dir)

    if not os.path.isdir(final_dataset_fpath):
        os.mkdir(final_dataset_fpath)

    for folder in os.listdir(dataset_fpath):
        for img in os.listdir(os.path.join(dataset_fpath, folder)):
            os.rename(os.path.join(dataset_fpath, folder, img),
                      os.path.join(final_dataset_fpath, img))
    shutil.rmtree(dataset_fpath)
    move_imgs(final_dataset_fpath)
    prepare_data(final_dataset_fpath, 0.2)

    predictions, data_iter, metadata = test_model_masked(model,
                                                         dataset,
                                                         edit=True)
    edit_predictions(predictions, data_iter, metadata)