Esempio n. 1
0
def default_params_forecasts(model):
    '''
    Our baseline:  forecasts with default SWAN params
    '''

    closest_params = model.closest_params(
        params=SWANParams(drf=1.0, cfw=0.015, stpm=0.00302))
    default_params = SWANParams(drf=closest_params[0],
                                cfw=closest_params[1],
                                stpm=closest_params[2])
    drf_idx, cfw_idx, stpm_idx, fid_time_idx, fid_space_idx = model.params_idxs(
        default_params)
    forecasts = model.grid[drf_idx, cfw_idx, stpm_idx, fid_time_idx,
                           fid_space_idx]

    return forecasts
Esempio n. 2
0
def save_archive_history(history, file_name='history.csv'):
    test_model = model_all_stations()

    with open(file_name, 'w', newline='') as csvfile:
        fieldnames = ['idx', 'gen_idx'] + [f'err_{idx + 1}' for idx in range(len(ALL_STATIONS))] \
                     + ['drf', 'stpm', 'cfw']

        writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
        writer.writeheader()

        for gen_idx, gen in enumerate(history):
            for ind_idx, ind in enumerate(gen):
                row_to_write = {}
                idx = gen_idx * len(gen) + ind_idx

                row_to_write['idx'] = idx
                row_to_write['gen_idx'] = gen_idx

                params = test_model.closest_params(ind.genotype)
                closest_params = SWANParams(drf=params[0],
                                            cfw=params[1],
                                            stpm=params[2],
                                            fidelity_time=params[3],
                                            fidelity_space=params[4])

                # TODO: bug here
                metrics = test_model.output(params=closest_params)
                for err_idx, err_value in enumerate(metrics):
                    row_to_write[f'err_{err_idx + 1}'] = err_value

                row_to_write['drf'] = ind.genotype.drf
                row_to_write['stpm'] = ind.genotype.stpm
                row_to_write['cfw'] = ind.genotype.cfw

                writer.writerow(row_to_write)
Esempio n. 3
0
def error_grid(noise_case=0):
    grid = CSVGridFile('../../samples/wind-exp-params-new.csv')
    stations = [1, 2, 3, 4, 5, 6, 7, 8, 9]

    ww3_obs_all = \
        [obs.time_series() for obs in
         wave_watch_results(path_to_results='../../samples/ww-res/', stations=stations)]

    model_all = FidelityFakeModel(grid_file=grid,
                                  observations=ww3_obs_all,
                                  stations_to_out=stations,
                                  error=error_rmse_all,
                                  forecasts_path='../../../wind-postproc/out')

    with open(f'../../samples/params_rmse_{noise_case}.csv',
              mode='w',
              newline='') as csv_file:
        writer = csv.writer(csv_file, delimiter=',')

        header = ['DRF', 'CFW', 'STPM']
        error_columns = [f'ERROR_K{station}' for station in stations]
        header.extend(error_columns)
        writer.writerow(header)

        fidelity = 240
        for row in grid.rows:
            metrics = model_all.output(
                params=SWANParams(drf=row.model_params.drf,
                                  cfw=row.model_params.cfw,
                                  stpm=row.model_params.stpm,
                                  fidelity_time=fidelity))
            row_to_write = row.model_params.params_list()
            row_to_write.extend(metrics)
            writer.writerow(row_to_write)
Esempio n. 4
0
    def train(self, mode='lhs', **kwargs):
        target = []

        if mode is 'lhs':
            for feature in self.features:
                params = SWANParams(drf=feature[0],
                                    cfw=feature[1],
                                    stpm=feature[2],
                                    fidelity_time=self.fidelity[0],
                                    fidelity_space=self.fidelity[1])
                target.append(
                    self.fake_model.output_from_model(
                        params=params)[self.station])

        target = np.asarray(target)

        start_time = datetime.now().strftime(DATE_FORMAT)
        print(
            f'{start_time}: starting to train kriging model '
            f'with {self.points_to_train} points for station: {self.station}')

        krig = kriging(self.features, target, name='multikrieg')
        krig.train(optimizer='ga')
        self.krig = krig

        end_time = datetime.now().strftime(DATE_FORMAT)
        print(f'{end_time}: finished to train kriging model with'
              f' {self.points_to_train} points for station: {self.station}')
Esempio n. 5
0
def run_genetic_opt(max_gens, pop_size, archive_size, crossover_rate,
                    mutation_rate, mutation_value_rate, stations, **kwargs):
    grid = CSVGridFile('../../samples/wind-exp-params-new.csv')
    ww3_obs = \
        [obs.time_series() for obs in wave_watch_results(path_to_results='../../samples/ww-res/', stations=stations)]

    train_model = FidelityFakeModel(grid_file=grid,
                                    observations=ww3_obs,
                                    stations_to_out=stations,
                                    error=error_rmse_all,
                                    forecasts_path='../../../wind-fidelity/*')
    test_range = (0, 1)
    test_model = model_all_stations(forecasts_range=test_range)

    operators = default_operators()
    history, archive_history = DefaultSPEA2(
        params=DefaultSPEA2.Params(max_gens=max_gens,
                                   pop_size=pop_size,
                                   archive_size=archive_size,
                                   crossover_rate=crossover_rate,
                                   mutation_rate=mutation_rate,
                                   mutation_value_rate=mutation_value_rate),
        objectives=partial(calculate_objectives_interp, train_model),
        evolutionary_operators=operators).solution(verbose=False)

    exptime2 = str(datetime.datetime.now().time()).replace(":", "-")
    # save_archive_history(archive_history, f'rob-exp-bl-{exptime2}.csv')

    params = history.last().genotype

    if 'save_figures' in kwargs and kwargs['save_figures'] is True:
        params = test_model.closest_params(params)
        closest_params = SWANParams(drf=params[0],
                                    cfw=params[1],
                                    stpm=params[2],
                                    fidelity_time=params[3],
                                    fidelity_space=params[4])

        drf_idx, cfw_idx, stpm_idx, fid_time_idx, fid_space_idx = test_model.params_idxs(
            closest_params)

        forecasts = test_model.grid[drf_idx, cfw_idx, stpm_idx, fid_time_idx,
                                    fid_space_idx]

        plot_results(forecasts=forecasts,
                     observations=wave_watch_results(
                         path_to_results='../../samples/ww-res/',
                         stations=ALL_STATIONS),
                     baseline=default_params_forecasts(test_model),
                     save=True,
                     file_path=kwargs['figure_path'],
                     values_range=test_range)

    return history.last()
Esempio n. 6
0
 def _fixed_params(self, params):
     params_fixed = SWANParams(
         drf=min(max(params.drf, min(self.grid_file.drf_grid)),
                 max(self.grid_file.drf_grid)),
         cfw=min(max(params.cfw, min(self.grid_file.cfw_grid)),
                 max(self.grid_file.cfw_grid)),
         stpm=min(max(params.stpm, min(self.grid_file.stpm_grid)),
                  max(self.grid_file.stpm_grid)),
         fidelity_time=params.fid_time,
         fidelity_space=params.fid_space)
     return params_fixed
Esempio n. 7
0
def crossover(p1, p2, rate):
    if random.random() >= rate:
        return p1

    part1_rate = abs(random.random())
    part2_rate = 1 - part1_rate

    child_params = SWANParams(
        drf=abs(p1.drf * part1_rate + p2.drf * part2_rate),
        cfw=abs(p1.cfw * part1_rate + p2.cfw * part2_rate),
        stpm=abs(p1.stpm * part1_rate + p2.stpm * part2_rate))
    return child_params
Esempio n. 8
0
def params_and_error_grid(model, station_index, stpm_index):
    drf, cfw = np.meshgrid(model.grid_file.drf_grid, model.grid_file.cfw_grid)
    stpm_fixed = model.grid_file.stpm_grid[stpm_index]

    error = np.ones(shape=drf.shape)
    for i in range(drf.shape[0]):
        for j in range(drf.shape[1]):
            out_by_stations = model.output(params=SWANParams(
                drf=drf[i, j], cfw=cfw[i, j], stpm=stpm_fixed))
            error[i, j] = out_by_stations[station_index]

    return drf, cfw, error
Esempio n. 9
0
def default_points_by_fidelity(size=10):
    points_by_fidelity = {}

    for fidelity in fidelity_combinations():
        points = []
        for _ in range(size):
            params = SWANParams.new_instance()
            params.fid_time = fidelity[0]
            params.fid_space = fidelity[1]

            points.append(params)

        points_by_fidelity[fidelity] = points

    return points_by_fidelity
Esempio n. 10
0
    def retrain_with_new_points(self, new_points):
        extended_features = self.features.tolist()
        for point in new_points:
            extended_features.append([point.drf, point.cfw, point.stpm])
            params = SWANParams(drf=point.drf,
                                cfw=point.cfw,
                                stpm=point.stpm,
                                fidelity_time=self.fidelity[0],
                                fidelity_space=self.fidelity[1])
            print(self.fake_model.output_from_model(params=params)[0])

        self.points_to_train += len(new_points)

        print(f'retrain with new {len(new_points)} features')

        self.features = np.asarray(extended_features)
        self.train()
Esempio n. 11
0
def initial_pop_lhs(size, **kwargs):
    samples_grid = lhs(PARAMS, size, 'center')
    for idx, params_range in enumerate([drf_range, cfw_range, stpm_range]):
        samples_grid[:, idx] = norm(loc=np.mean(params_range),
                                    scale=np.std(params_range)).ppf(
                                        samples_grid[:, idx])

    population = [
        SWANParams(drf=sample[0], cfw=sample[1], stpm=sample[2])
        for sample in samples_grid
    ]

    # population = [SWANParams(drf=1.0, cfw=0.015, stpm=0.00302) for sample in samples_grid]

    if 'dump' in kwargs and kwargs['dump'] is True:
        dump_population(population, kwargs['file_path'])

    return population
Esempio n. 12
0
def plot_params_space():
    grid = CSVGridFile('../../samples/wind-exp-params.csv')
    forecasts_path = '../../../samples/wind-noice-runs/results/1/'

    fake = FidelityFakeModel(grid_file=grid, forecasts_path=forecasts_path)

    drf, cfw = np.meshgrid(fake.grid_file.drf_grid, fake.grid_file.cfw_grid)
    stpm_fixed = fake.grid_file.stpm_grid[0]

    stations = 3
    error = np.ones(shape=(stations, drf.shape[0], drf.shape[1]))

    for i in range(drf.shape[0]):
        for j in range(drf.shape[1]):
            diff = fake.output(params=SWANParams(
                drf=drf[i, j], cfw=cfw[i, j], stpm=stpm_fixed))
            for station in range(stations):
                error[station, i, j] = diff[station]
Esempio n. 13
0
def optimize_test(train_stations,
                  max_gens,
                  pop_size,
                  archive_size,
                  crossover_rate,
                  mutation_rate,
                  mutation_value_rate,
                  sur_points,
                  plot_figures=True):
    train_range = (0, 1)
    test_range = (0, 1)

    grid = CSVGridFile('../../samples/wind-exp-params-new.csv')

    ww3_obs = \
        [obs.time_series() for obs in
         wave_watch_results(path_to_results='../../samples/ww-res/', stations=train_stations)]

    error = error_rmse_all
    train_model = FidelityFakeModel(grid_file=grid,
                                    observations=ww3_obs,
                                    stations_to_out=train_stations,
                                    error=error,
                                    forecasts_path='../../../2fidelity/*',
                                    forecasts_range=train_range,
                                    is_surrogate=True,
                                    sur_points=sur_points)

    operators = default_operators()

    history, archive_history = DefaultSPEA2(
        params=DefaultSPEA2.Params(max_gens,
                                   pop_size=pop_size,
                                   archive_size=archive_size,
                                   crossover_rate=crossover_rate,
                                   mutation_rate=mutation_rate,
                                   mutation_value_rate=mutation_value_rate),
        objectives=partial(calculate_objectives_interp, train_model),
        evolutionary_operators=operators).solution(verbose=True)

    params = history.last().genotype

    if plot_figures:
        test_model = model_all_stations(forecasts_range=test_range)
        params = test_model.closest_params(params)
        closest_params = SWANParams(drf=params[0],
                                    cfw=params[1],
                                    stpm=params[2],
                                    fidelity_time=params[3],
                                    fidelity_space=params[4])

        drf_idx, cfw_idx, stpm_idx, fid_time_idx, fid_space_idx = test_model.params_idxs(
            closest_params)

        forecasts = test_model.grid[drf_idx, cfw_idx, stpm_idx, fid_time_idx,
                                    fid_space_idx]

        plot_results(forecasts=forecasts,
                     observations=wave_watch_results(
                         path_to_results='../../samples/ww-res/',
                         stations=ALL_STATIONS),
                     baseline=default_params_forecasts(test_model))
        plot_population_movement(archive_history, grid)

    return history.last().error_value
Esempio n. 14
0
def reference_metrics():
    return all_error_metrics(params=SWANParams(drf=1.0,
                                               cfw=0.015,
                                               stpm=0.00302),
                             models_to_tests=init_models_to_tests())
Esempio n. 15
0
def default_initial_pop(size):
    return [SWANParams.new_instance() for _ in range(size)]
Esempio n. 16
0
 def _swan_params(cls, csv_row):
     return SWANParams(drf=float(csv_row['DRF']),
                       cfw=float(csv_row['CFW']),
                       stpm=float(csv_row['STPM']))
Esempio n. 17
0
    def _init_grids(self):
        self.grid = self._empty_grid()

        files = forecast_files_from_dir(self.forecasts_path)

        if not files:
            raise FileNotFoundError("EMPTY FORECAST")

        stations = files_by_stations(
            files,
            noise_run=self.noise_run,
            stations=[str(st) for st in self.stations])

        files_by_run_idx = dict()

        for station in stations:
            for file in station:
                _, name = os.path.split(file)
                _, _, run_idx = extracted_forecast_params(file_name=name)

                files_by_run_idx[file] = run_idx

        for row in self.grid_file.rows:
            run_idx = row.id
            forecasts_files = sorted([
                key for key in files_by_run_idx.keys()
                if files_by_run_idx[key] == run_idx
            ])

            files_by_fidelity = self._files_by_fidelity(forecasts_files)

            for fidelity in files_by_fidelity:
                files = files_by_fidelity[fidelity]
                forecasts = []
                for idx, file_name in enumerate(files):
                    forecasts.append(
                        FidelityFakeModel.Forecast(
                            self.stations[idx],
                            ForecastFile(path=file_name),
                            range_values=self.forecasts_range))

                fid_time, fid_space = fidelity
                drf_idx, cfw_idx, stpm_idx, fid_time_idx, fid_space_idx = self.params_idxs(
                    params=SWANParams(drf=row.model_params.drf,
                                      cfw=row.model_params.cfw,
                                      stpm=row.model_params.stpm,
                                      fidelity_time=fid_time,
                                      fidelity_space=fid_space))

                self.grid[drf_idx, cfw_idx, stpm_idx, fid_time_idx,
                          fid_space_idx] = forecasts

        # empty array
        self.err_grid = np.zeros(shape=self.grid.shape + (len(stations), ))

        # calc fitness for every point
        st_set_id = ("-".join(str(self.stations)))
        file_path = f'grid-saved-{self.error.__name__}_range_{self.forecasts_range}_st{st_set_id}.pik'

        grid_file_path = os.path.join(GRID_PATH, file_path)

        if not os.path.isfile(grid_file_path):
            grid_idxs = self.__grid_idxs()

            for i, j, k, m, n in grid_idxs:
                forecasts = [forecast for forecast in self.grid[i, j, k, m, n]]
                for forecast, observation in zip(forecasts, self.observations):
                    station_idx = forecasts.index(forecast)

                    obs_in_range = observations_from_range(
                        observation, self.forecasts_range)
                    self.err_grid[i, j, k, m, n, station_idx] = self.error(
                        forecast, obs_in_range)

            pickle_out = open(grid_file_path, 'wb')
            pickle.dump(self.err_grid, pickle_out)
            pickle_out.close()
            print(f"FITNESS GRID SAVED, file_name: {grid_file_path}")
        else:
            with open(grid_file_path, 'rb') as f:
                self.err_grid = pickle.load(f)