from keras.optimizers import Adam import os import sys sys.path.append(os.path.join(os.path.dirname(__file__), '../')) from src.r2d2 import R2D2, Actor from src.r2d2_callbacks import * from src.processor import AtariProcessor from src.image_model import DQNImageModel from src.memory import * from src.policy import * from src.common import InputType, LstmType, DuelingNetwork, seed_everything, LoggerType from src.callbacks import ConvLayerView, MovieLogger seed_everything(42) ENV_NAME = "BreakoutDeterministic-v4" class MyActor(Actor): def getPolicy(self, actor_index, actor_num): return EpsilonGreedy(0.1) def fit(self, index, agent): env = gym.make(ENV_NAME) agent.fit(env, visualize=False, verbose=0) env.close() class MyActor1(MyActor): def getPolicy(self, actor_index, actor_num):
import gym from keras.optimizers import Adam import traceback import os import sys sys.path.append(os.path.join(os.path.dirname(__file__), '../')) from src.common import seed_everything seed_everything(43) from src.r2d3 import Actor from src.processor import AcrobotProcessor from src.policy import EpsilonGreedy, AnnealingEpsilonGreedy from src.image_model import DQNImageModel from src.memory import PERRankBaseMemory, PERProportionalMemory from src.common import InputType, LstmType, DuelingNetwork, LoggerType from Lib import run_gym_rainbow, run_gym_r2d3, run_play, run_replay ENV_NAME = "Acrobot-v1" episode_save_dir = "tmp_{}.".format(ENV_NAME) def create_parameter(): env = gym.make(ENV_NAME) # ゲーム情報 print("action_space : " + str(env.action_space))