def get_error(self, data_set: DataSet): squared_sum = 0 # Sum up the squared sup across all squared differences between the actual class value and the expected value. for example_array, expected_class in data_set.get_data(): output = self.run(example_array) squared_sum += (output - expected_class)**2 return math.sqrt(squared_sum) / len(data_set.get_data())
def get_accuracy(self, data_set: DataSet): correct = 0 # Sum the number of correctly classified examples. for example_array, expected_class in data_set.get_data(): output = self.run(example_array) if output == expected_class: correct += 1 # Divide the number of correct examples by the total number of examples. return correct / len(data_set.get_data())