Esempio n. 1
0
    def test_example_embed_embed_minibatch_with_different_number_of_inputs(
            self):
        embed = ExampleEmbed(2, 2, 1, (np.arange(5) + 1).reshape((5, 1)))
        """
        EmbedId
          0 (-2)   -> 1 
          1 (-1)   -> 2
          2 ( 0)   -> 3
          3 ( 1)   -> 4
          4 (NULL) -> 5
        """

        metadata = DatasetMetadata(2, set([]), 2, 2)
        e0 = examples_encoding(
            [Example([[0, 1]], 0), Example([[1]], 1)], metadata)
        e1 = examples_encoding(
            [Example([1, [0, 1]], [0]),
             Example([0, [0, 1]], [])], metadata)

        state_embeddings = embed.forward(np.array([e0.types, e1.types]),
                                         np.array([e0.values, e1.values]))
        self.assertEqual((2, 2, 3, 2 + 2 * 1), state_embeddings.shape)
        self.assertTrue(
            np.allclose([0, 1, 3, 4],
                        state_embeddings.array[0, 0, 0]))  # Input of e00
        self.assertTrue(
            np.allclose([0, 0, 5, 5],
                        state_embeddings.array[0, 0, 1]))  # Input of e00
        # Output of e00
        self.assertTrue(
            np.allclose([1, 0, 3, 5], state_embeddings.array[0, 0, 2]))
        self.assertTrue(
            np.allclose([0, 1, 4, 5],
                        state_embeddings.array[0, 1, 0]))  # Input of e01
        self.assertTrue(
            np.allclose([0, 0, 5, 5],
                        state_embeddings.array[0, 1, 1]))  # Input of e01
        # Output of e01
        self.assertTrue(
            np.allclose([1, 0, 4, 5], state_embeddings.array[0, 1, 2]))
        self.assertTrue(
            np.allclose([1, 0, 4, 5],
                        state_embeddings.array[1, 0, 0]))  # Input of e10
        self.assertTrue(
            np.allclose([0, 1, 3, 4],
                        state_embeddings.array[1, 0, 1]))  # Input of e10
        # Output of e10
        self.assertTrue(
            np.allclose([0, 1, 3, 5], state_embeddings.array[1, 0, 2]))
        self.assertTrue(
            np.allclose([1, 0, 3, 5],
                        state_embeddings.array[1, 1, 0]))  # Input of e11
        self.assertTrue(
            np.allclose([0, 1, 3, 4],
                        state_embeddings.array[1, 1, 1]))  # Input of e11
        # Output of e11
        self.assertTrue(
            np.allclose([0, 1, 5, 5], state_embeddings.array[1, 1, 2]))
Esempio n. 2
0
    def test_TrainingClassifier(self):
        embed = ExampleEmbed(1, 2, 2)
        encoder = Encoder(10)
        decoder = Decoder(2)
        classifier = TrainingClassifier(ch.Sequential(embed, encoder, decoder))

        metadata = DatasetMetadata(1, set([]), 2, 2)
        e = examples_encoding(
            [Example([[0, 1]], 0), Example([[1]], 1)], metadata)
        labels = np.array([[1, 1]])
        loss = classifier(np.array([e.types]), np.array([e.values]), labels)
        loss.grad = np.ones(loss.shape, dtype=np.float32)

        # backward does not throw an error
        loss.backward()
Esempio n. 3
0
    def test_predict_with_neural_network(self):
        examples = [
            Example([2, [10, 20, 30]], 30),
            Example([1, [-10, 30, 40]], 30)
        ]
        metadata = DatasetMetadata(2, set(["MAP", "HEAD"]), 256, 5)
        model_shape = ModelShapeParameters(metadata, 3, 2, 10)
        m = InferenceModel(model_shape)
        pred = predict_with_neural_network(model_shape, m)
        prob = pred(examples)

        encoding = examples_encoding(examples, metadata)
        prob_dnn = m.model(np.array([encoding.types]),
                           np.array([encoding.values])).array[0]

        self.assertAlmostEqual(prob_dnn[0], prob["HEAD"])
        self.assertAlmostEqual(prob_dnn[1], prob["MAP"])
Esempio n. 4
0
    def test_Encoder(self):
        embed = ExampleEmbed(1, 2, 1, (np.arange(5) + 1).reshape((5, 1)))

        encoder = Encoder(1,
                          initialW=ch.initializers.One(),
                          initial_bias=ch.initializers.Zero())
        self.assertEqual(6, len(list(encoder.params())))
        """
        state_embeddings: (N, e, 2, 4) -> h1: (N, e, 1) -> h2: (N, e, 2) -> output: (N, e, 2)
        """

        metadata = DatasetMetadata(1, set([]), 2, 2)
        e = examples_encoding(
            [Example([[0, 1]], 0), Example([[1]], 1)], metadata)

        state_embeddings = embed(np.array([e.types]), np.array([e.values]))
        layer_encodings = encoder(state_embeddings)

        self.assertEqual((1, 2, 1), layer_encodings.shape)
        for i in range(1):
            for j in range(2):
                h = np.array(state_embeddings[i, j, :, :].array.sum())
                h = F.sigmoid(F.sigmoid(F.sigmoid(h)))
                self.assertEqual(h.array, layer_encodings.array[i, j])
Esempio n. 5
0
    def test_example_embed_embed_one_sample(self):
        embed = ExampleEmbed(1, 2, 1, (np.arange(5) + 1).reshape((5, 1)))
        self.assertEqual(1, len(list(embed.params())))
        """
        EmbedId
          0 (-2)   -> 1 
          1 (-1)   -> 2
          2 ( 0)   -> 3
          3 ( 1)   -> 4
          4 (NULL) -> 5
        """

        e = examples_encoding(
            [Example([[0, 1]], 0), Example([[1]], 1)],
            DatasetMetadata(1, set([]), 2, 2))

        state_embeddings = embed.forward(np.array([e.types]),
                                         np.array([e.values]))
        self.assertEqual((1, 2, 2, 2 + 2 * 1), state_embeddings.shape)
        self.assertTrue(
            np.allclose([0, 1, 3, 4],
                        state_embeddings.array[0, 0, 0]))  # Input of e1
        self.assertTrue(
            np.allclose([1, 0, 3, 5],
                        state_embeddings.array[0, 0, 1]))  # Output of e1
        self.assertTrue(
            np.allclose([0, 1, 4, 5],
                        state_embeddings.array[0, 1, 0]))  # Input of e2
        self.assertTrue(
            np.allclose([1, 0, 4, 5],
                        state_embeddings.array[0, 1, 1]))  # Output of e2

        # backward does not throw an error
        state_embeddings.grad = np.ones(state_embeddings.shape,
                                        dtype=np.float32)
        state_embeddings.backward()
Esempio n. 6
0
 def test_examples_encoding_if_num_inputs_is_too_large(self):
     metadata = DatasetMetadata(0, set([]), 2, 2)
     self.assertRaises(
         RuntimeError, lambda: examples_encoding(
             [Example([1, [0, 1]], [0]),
              Example([0, [0, 1]], [])], metadata))