def create_datasets(self): root = self.config.data_params.librispeech_root print('Initializing train dataset.') train_dataset = LibriSpeech(root, train=True, spectral_transforms=self.config.data_params.spectral_transforms, wavform_transforms=self.config.data_params.wavform_transforms, train_urls=self.config.data_params.train_urls) print('Initializing validation dataset.') val_dataset = LibriSpeech(root, train=False, spectral_transforms=self.config.data_params.spectral_transforms, wavform_transforms=self.config.data_params.wavform_transforms, # use the same split so same speakers test_url=self.config.data_params.test_url) return train_dataset, val_dataset
def create_datasets(self): train_dataset = LibriSpeech( train=True, spectral_transforms=False, wavform_transforms=False, small=self.config.data_params.small, input_size=self.config.data_params.input_size, ) val_dataset = LibriSpeech( train=False, spectral_transforms=False, wavform_transforms=False, small=self.config.data_params.small, test_url=self.config.data_params.test_url, input_size=self.config.data_params.input_size, ) return train_dataset, val_dataset
def create_datasets(self): print('Initializing train dataset.') train_dataset = LibriSpeech( train=True, spectral_transforms=self.config.data_params.spectral_transforms, wavform_transforms=not self.config.data_params.spectral_transforms, small=self.config.data_params.small, input_size=self.config.data_params.input_size, ) print('Initializing validation dataset.') val_dataset = LibriSpeech( train=False, spectral_transforms=False, wavform_transforms=False, small=self.config.data_params.small, test_url=self.config.data_params.test_url, input_size=self.config.data_params.input_size, ) return train_dataset, val_dataset